Lattice schwinger model with interpolated gauge fields

被引:8
作者
Gattringer, C [1 ]
机构
[1] GRAZ UNIV, INST THEORET PHYS, A-8010 GRAZ, AUSTRIA
关键词
D O I
10.1103/PhysRevD.53.5090
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze the Schwinger model on an infinite lattice using the continuum definition of the fermion determinant and a linear interpolation of the lattice gauge fields. The possible class of interpolations for the gauge fields, compatible with gauge invariance, is discussed. The effective action for the lattice gauge field is computed for the Wilson formulation as well as for noncompact lattice gauge fields. For the noncompact formulation we prove that the model has a critical point with diverging correlation length at zero gauge coupling e. We compute the chiral condensate for e>0 and compare the result to the N-flavor continuum Schwinger model. This indicates that there is only one flavor of fermions with the same chiral properties as in the continuum model, already before the continuum limit is performed. We discuss how operators have to be renormalized in the continuum limit to obtain the continuum Schwinger model.
引用
收藏
页码:5090 / 5099
页数:10
相关论文
共 26 条
[1]   MICROCANONICAL FERMIONIC AVERAGE METHOD IN THE SCHWINGER MODEL - A REALISTIC COMPUTATION OF THE CHIRAL CONDENSATE [J].
AZCOITI, V ;
DICARLO, G ;
GALANTE, A ;
GRILLO, AF ;
LALIENA, V .
PHYSICAL REVIEW D, 1994, 50 (11) :6994-6997
[2]   Critical behavior of the Schwinger model with Wilson fermions [J].
Azcoiti, V ;
DiCarlo, G ;
Galante, A ;
Grillo, AF ;
Laliena, V .
PHYSICAL REVIEW D, 1996, 53 (09) :5069-5074
[3]  
BELVEDERE LV, 1979, NUCL PHYS B, V153, P112, DOI 10.1016/0550-3213(79)90464-4
[4]  
Berezin J., 1966, The Method of Second Quantization, V24
[5]   TOPOLOGICAL CHARGE IN THE LATTICE SCHWINGER MODEL [J].
FLUME, R ;
WYLER, D .
PHYSICS LETTERS B, 1982, 108 (4-5) :317-322
[6]   PHASE-TRANSITIONS AND REFLECTION POSITIVITY .2. LATTICE SYSTEMS WITH SHORT-RANGE AND COULOMB INTERACTIONS [J].
FROHLICH, J ;
ISRAEL, RB ;
LIEB, EH ;
SIMON, B .
JOURNAL OF STATISTICAL PHYSICS, 1980, 22 (03) :297-347
[7]  
FROHLICH J, 1978, COMMUN MATH PHYS, V62, P1, DOI 10.1007/BF01940327
[8]   FUNCTIONAL INTEGRAL APPROACH TO THE N-FLAVOR SCHWINGER MODEL [J].
GATTRINGER, C ;
SEILER, E .
ANNALS OF PHYSICS, 1994, 233 (01) :97-124
[9]   LEE-YANG ZEROS IN THE ONE FLAVOR MASSIVE LATTICE SCHWINGER MODEL [J].
GAUSTERER, H ;
LANG, CB .
PHYSICS LETTERS B, 1994, 341 (01) :46-52
[10]   ON THE PHASE-STRUCTURE OF THE SCHWINGER MODEL WITH WILSON FERMIONS [J].
GAUSTERER, H ;
LANG, CB .
NUCLEAR PHYSICS B, 1994, :201-203