Scanning electrochemical microscopy of membrane transport in the reverse imaging mode

被引:33
作者
Uitto, OD [1 ]
White, HS [1 ]
机构
[1] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA
关键词
D O I
10.1021/ac0009301
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Scanning electrochemical microscopy (SECM), operated in reverse imaging mode (RIM), has been used to visualize the steady-state transport of molecules entering into porous membranes. RIM imaging is advantageous for investigating transport across biological membranes in situations where the SECM tip can access only the exterior membrane surface. Examples of RIM images of a synthetic membrane (mica with pores filled with the ion-selective polymer Nafion) and a biological membrane (hairless mouse skin) recorded during diffusive and iontophoretic transport, are reported. RIM imaging during diffusive transport allows visualization of the depletion of solute molecules in the solution adjacent to the pore openings. However, an accumulation of solute molecules above the pore opening is observed during iontophoresis, which is a consequence of the separation of the solute from the solvent (i.e., ultrafiltration). The separation results from differences in the rates of molecule transfer across the pore/solution interface when electroosmotic flow is operative. The results suggest that RIM imaging may be useful for measuring the kinetics of interfacial molecule transfer at biological membranes.
引用
收藏
页码:533 / 539
页数:7
相关论文
共 31 条
[1]   Studies of charge transfer at liquid | liquid interfaces and bilayer lipid membranes by scanning electrochemical microscopy [J].
Amemiya, S ;
Ding, ZF ;
Zhou, JF ;
Bard, AJ .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2000, 483 (1-2) :7-17
[2]   Permeation of ammonia across bilayer lipid membranes studied by ammonium ion selective microelectrodes [J].
Antonenko, YN ;
Pohl, P ;
Denisov, GA .
BIOPHYSICAL JOURNAL, 1997, 72 (05) :2187-2195
[3]  
Bard A.J., 1994, ELECTROANAL CHEM, V18, A., P243
[4]   SCANNING ELECTROCHEMICAL MICROSCOPY - INTRODUCTION AND PRINCIPLES [J].
BARD, AJ ;
FAN, FRF ;
KWAK, J ;
LEV, O .
ANALYTICAL CHEMISTRY, 1989, 61 (02) :132-138
[5]   Scanning electrochemical microscopy (SECM) as a probe of transfer processes in two-phase systems: Theory and experimental applications of SECM-induced transfer with arbitrary partition coefficients, diffusion coefficients, and interfacial kinetics [J].
Barker, AL ;
Macpherson, JV ;
Slevin, CJ ;
Unwin, PR .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (09) :1586-1598
[6]   Visualization and analysis of electroosmotic flow in hairless mouse skin [J].
Bath, BD ;
White, HS ;
Scott, ER .
PHARMACEUTICAL RESEARCH, 2000, 17 (04) :471-475
[7]   Imaging molecular transport in porous membranes. Observation and analysis of electroosmotic flow in individual pores using the scanning electrochemical microscope [J].
Bath, BD ;
Lee, RD ;
White, HS ;
Scott, ER .
ANALYTICAL CHEMISTRY, 1998, 70 (06) :1047-1058
[8]   Electrically facilitated molecular transport. Analysis of the relative contributions of diffusion, migration, and electroosmosis to solute transport in an ion-exchange membrane [J].
Bath, BD ;
White, HS ;
Scott, ER .
ANALYTICAL CHEMISTRY, 2000, 72 (03) :433-442
[9]  
BATH BD, IN PRESS J PHARM SCI
[10]  
BATH BD, IN PRESS SCANNING EL