Sequential roles for Mash1 and Ngn2 in the generation of dorsal spinal cord interneurons

被引:101
作者
Helms, AW
Battiste, J
Henke, RM
Nakada, Y
Simplicio, N
Guillemot, F
Johnson, JE [1 ]
机构
[1] Univ Texas, SW Med Ctr, Ctr Basic Neurosci, Dallas, TX 75390 USA
[2] Natl Inst Med Res, Div Mol Neurobiol, London NW7 1AA, England
来源
DEVELOPMENT | 2005年 / 132卷 / 12期
关键词
spinal cord development; dorsal horn; bHLH; neuronal specification; mouse; Atoh1; Neurog2; Ascl1;
D O I
10.1242/dev.01859
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The dorsal spinal cord contains a diverse array of neurons that connect sensory input from the periphery to spinal cord motoneurons and brain. During development, six dorsal neuronal populations (dI1-dI6) have been defined by expression of homeodomain factors and position in the dorsoventral axis. The bHLH transcription factors Mash1 and Ngn2 have distinct roles in specification of these neurons. Mash1 is necessary and sufficient for generation of most dI3 and all dI5 neurons. Unexpectedly, dI4 neurons are derived from cells expressing low levels or no Mash1, and this population increases in the Mash1 mutant. Ngn2 is not required for any specific neuronal cell type but appears to modulate the composition of neurons that form. In the absence of Ngn2, there is an increase in the number of dI3 and dI5 neurons, in contrast to the effects produced by activity of Mash1. Mash1 is epistatic to Ngn2, and, unlike the relationship between other neural bHLH factors, cross-repression of expression is not detected. Thus, bHLH factors, particularly Mash1 and related family members Math1 and Ngn1, provide a code for generating neuronal diversity in the dorsal spinal cord with Ngn2 serving to modulate the number of neurons in each population formed.
引用
收藏
页码:2709 / 2719
页数:11
相关论文
共 52 条
[1]   Proprioceptor pathway development is dependent on MATH1 [J].
Bermingham, NA ;
Hassan, BA ;
Wang, VY ;
Fernandez, M ;
Banfi, S ;
Bellen, HJ ;
Fritzsch, B ;
Zoghbi, HY .
NEURON, 2001, 30 (02) :411-422
[2]   Proneural genes and the specification of neural cell types [J].
Bertrand, N ;
Castro, DS ;
Guillemot, F .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (07) :517-530
[3]  
BIRREN SJ, 1993, DEVELOPMENT, V119, P597
[4]   A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube [J].
Briscoe, J ;
Pierani, A ;
Jessell, TM ;
Ericson, J .
CELL, 2000, 101 (04) :435-445
[5]  
Casarosa S, 1999, DEVELOPMENT, V126, P525
[6]   Patterning cell types in the dorsal spinal cord: What the mouse mutants say [J].
Caspary, T ;
Anderson, KV .
NATURE REVIEWS NEUROSCIENCE, 2003, 4 (04) :289-297
[7]  
Cau E, 2002, DEVELOPMENT, V129, P1871
[8]   Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates [J].
Cheng, LP ;
Arata, A ;
Mizuguchi, R ;
Qian, Y ;
Karunaratne, A ;
Gray, PA ;
Arata, S ;
Shirasawa, S ;
Bouchard, M ;
Luo, P ;
Chen, CL ;
Busslinger, M ;
Goulding, M ;
Onimaru, H ;
Ma, QF .
NATURE NEUROSCIENCE, 2004, 7 (05) :510-517
[9]   Pax6 controls progenitor cell identity and neuronal fate in response to graded shh signaling [J].
Ericson, J ;
Rashbass, P ;
Schedl, A ;
BrennerMorton, S ;
Kawakami, A ;
vanHeyningen, V ;
Jessell, TM ;
Briscoe, J .
CELL, 1997, 90 (01) :169-180
[10]  
Farah MH, 2000, DEVELOPMENT, V127, P693