Competition between a prochlorophyte and a cyanobacterium under various phosphorus regimes: Comparison with the Droop model

被引:78
作者
Ducobu, H
Huisman, J
Jonker, RR
Mur, LR
机构
[1] Univ Amsterdam, Microbiol Lab, ARISE, NL-1018 WS Amsterdam, Netherlands
[2] Univ Groningen, Dept Plant Biol, NL-9750 AA Haren, Netherlands
[3] Univ Groningen, Dept Genet, NL-9750 AA Haren, Netherlands
[4] AquaSense, NL-1090 HC Amsterdam, Netherlands
关键词
continuous culture; Droop model; Monod model; phosphorus storage; phosphorus uptake; Planktothrix agardhii; Prochlorothrix hollandica; pulsed culture; resource competition;
D O I
10.1046/j.1529-8817.1998.340467.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The ecophysiology and competitive behavior of the prochlorophyte Prochlorothrix hollandica Burger-Wiersma, Stal et Mur, and the cyanobacterium Planktothrix agardhii Anagn. et Kom. were investigated in phosphorus-limited continuous cultures. When the species we-re exposed to successive saturating-pulses of P, the maximal P uptake rate decreased linearly with an increase in the P cell quota. Prochlorothrix had a higher maximal P uptake rate, a lower half-saturation constant for P uptake, higher maximal cell quota for P, and slightly lower minimal cell quota for P than Planktothrix. These data indicate that Prochlorothrix is an affinity and storage strategist, at least when compared to Planktothrix. On the other hand, Prochlorothrix had a lower maximal growth rate than Planktothrix. On the basis of these ecophysiological parameters, we developed a Droop model to predict the time course and outcome of competition under various P regimes. The model predictions were in line with the results of competition experiments under three different P-limited conditions (continuous P supply, 4-day pulse period, 12-day pulse period). Prochlorothrix competitively displaced Planktothrix under both a constant and a pulsed P supply, and competitive displacement of Planktothrix was slowest in the experiment with a 12-day pulse period. In the pulsed experiments, the mean filament lengths and chl a fluorescence of the species oscillated at the same frequency as the pulse additions. In contrast to the Droop model, the predictions of the Monod model were not in line with the outcome of the competition experiments. Our results demonstrate that Prochlorothrix is a very good competitor for P and that the time course and outcome of competition for P in a variable environment can be predicted on the basis of the P uptake and storage characteristics of the species.
引用
收藏
页码:467 / 476
页数:10
相关论文
共 57 条
[1]  
Bostrom B., 1982, Advances in Limnology, V18, P5
[2]   A NEW PROKARYOTE CONTAINING CHLOROPHYLL-A AND CHLOROPHYLL-B [J].
BURGERWIERSMA, T ;
VEENHUIS, M ;
KORTHALS, HJ ;
VANDEWIEL, CCM ;
MUR, LR .
NATURE, 1986, 320 (6059) :262-264
[3]   PROCHLOROTHRIX-HOLLANDICA GEN-NOV, SP-NOV, A FILAMENTOUS OXYGENIC PHOTOAUTOTROPHIC PROCARYOTE CONTAINING CHLOROPHYLL-A AND CHLOROPHYLL-B - ASSIGNMENT TO PROCHLOROTRICHACEAE FAM-NOV AND ORDER PROCHLORALES FLORENZANO, BALLONI, AND MATERASSI 1986, WITH EMENDATION OF THE ORDINAL DESCRIPTION [J].
BURGERWIERSMA, T ;
STAL, LJ ;
MUR, LR .
INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1989, 39 (03) :250-257
[4]   UNSTEADY CONTINUOUS CULTURE OF PHOSPHATE-LIMITED MONOCHRYSIS-LUTHERI DROOP - EXPERIMENTAL AND THEORETICAL-ANALYSIS [J].
BURMASTER, DE .
JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 1979, 39 (02) :167-186
[5]  
DeNobel WT, 1997, FEMS MICROBIOL ECOL, V24, P259, DOI 10.1111/j.1574-6941.1997.tb00443.x
[6]  
DROOP MR, 1973, J PHYCOL, V9, P264
[7]   PATTERNS IN PHYTOPLANKTON COMMUNITY STRUCTURE IN FLORIDA LAKES [J].
DUARTE, CM ;
CANFIELD, DE .
LIMNOLOGY AND OCEANOGRAPHY, 1992, 37 (01) :155-161
[8]   OPTICAL PLANKTON ANALYZER - A FLOW CYTOMETER FOR PLANKTON ANALYSIS .2. SPECIFICATIONS [J].
DUBELAAR, GBJ ;
GROENEWEGEN, AC ;
STOKDIJK, W ;
VANDENENGH, GJ ;
VISSER, JWM .
CYTOMETRY, 1989, 10 (05) :529-539
[9]  
Ducobu H, 1998, THESIS U AMSTERDAM
[10]   COUPLING OF PHYTOPLANKTON AND DETRITUS IN A SHALLOW, EUTROPHIC LAKE (LAKE LOOSDRECHT, THE NETHERLANDS) [J].
GONS, HJ ;
BURGERWIERSMA, T ;
OTTEN, JH ;
RIJKEBOER, M .
HYDROBIOLOGIA, 1992, 233 (1-3) :51-59