Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioral enrichment: Relevance to Alzheimer's disease

被引:143
作者
Opii, Wycliffe .
Joshi, Gururaj
Head, Elizabeth
Milgram, N. William
Muggenburg, Bruce A.
Kleine, Jon B.
Pierce, William M.
Cotman, Carl W.
Butterfield, D. Allan [1 ]
机构
[1] Univ Kentucky, Ctr Membrane Sci, Dept Chem, Lexington, KY 40506 USA
[2] Univ Kentucky, Sanders Brown Ctr Aging, Lexington, KY 40506 USA
[3] Univ Calif Irvine, Dept Neurol, Inst Brain Aging & Dementia, Irvine, CA 92697 USA
[4] Univ Toronto, Div Life Sci, Toronto, ON M1C 1A4, Canada
[5] Lovelace Resp Res Inst, Albuquerque, NM 87108 USA
[6] Univ Louisville, Dept Med, Kidney Dis Program, Louisville, KY 40292 USA
[7] Univ Louisville, Dept Pharmacol, Louisville, KY 40292 USA
关键词
oxidative stress; canine; cognition; antioxidants; aging; behavioral enrichment; beta-amyloid; redox proteomics; memory; proteomics;
D O I
10.1016/j.neurobiolaging.2006.09.012
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Aging and age-related disorders such as Alzheimer's disease (AD) are usually accompanied by oxidative stress as one of the main mechanisms contributing to neurodegeneration and cognitive decline. Aging canines develop cognitive dysfunction and neuropathology similar to those seen in humans, and the use of antioxidants results in reductions in oxidative damage and in improvement in cognitive function in this canine model of human aging. In the present study, the effect of a long-term treatment with an antioxidant-fortified diet and a program of behavioral enrichment on oxidative damage was studied in aged canines. To identify the neurobiological mechanisms underlying these treatment effects, the parietal cortex from 23 beagle dogs (8.1-12.4 years) were treated for 2.8 years in one of four treatment groups: i.e., control food-control behavioral enrichment (CC); control food-behavioral enrichment (CE); antioxidant food-control behavioral enrichment (CA); enriched environment-antioxidant-fortified food (EA). We analyzed the levels of the oxidative stress biomarkers, i.e., protein carbonyls, 3-nitrotyrosine (3-NT), and the lipid peroxidation product, 4-hydroxynonenal (HNE), and observed a decrease in their levels on all treatments when compared to control, with the most significant effects found in the combined treatment, EA. Since EA treatment was most effective, we also carried out a comparative proteomics study to identify specific brain proteins that were differentially expressed and used a parallel redox proteomics approach to identify specific brain proteins that were less oxidized following EA. The specific protein carbonyl levels of glutamate dehydrogenase [NAD (P)], glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alpha-enolase, neurofilament triplet L protein, glutathione-S-transferase (GST) and fascin actin bundling protein were significantly reduced in brain of EA-treated dogs compared to control. We also observed significant increases in expression of Cu/Zn superoxide dismutase, fructose-bisphosphate aldolase C, creatine kinase, glutamate dehydrogenase and glyceraldehyde3-phosphate dehydrogenase. The increased expression of these proteins and in particular Cu/Zn SOD correlated with improved cognitive function. In addition, there was a significant increase in the enzymatic activities of glutathione-S-transferase (GST) and total superoxide dismutase (SOD), and significant increase in the protein levels of heme oxygenase (HO-1) in EA treated dogs compared to control. These findings suggest that the combined treatment reduces the levels of oxidative damage and improves the antioxidant reserve systems in the aging canine brain, and may contribute to improvements in learning and memory. These observations provide insights into a possible neurobiological mechanism underlying the effects of the combined treatment. These results support the combination treatments as a possible therapeutic approach that could be translated to the aging human population who are at risk for age-related neurodegenerative disorders, including Alzheimer's disease. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:51 / 70
页数:20
相关论文
共 119 条
[1]   Fascin protrusions in cell interactions [J].
Adams, JC .
TRENDS IN CARDIOVASCULAR MEDICINE, 2004, 14 (06) :221-226
[2]   Roles of fascin in cell adhesion and motility [J].
Adams, JC .
CURRENT OPINION IN CELL BIOLOGY, 2004, 16 (05) :590-596
[3]   Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease [J].
Adlard, PA ;
Perreau, VM ;
Pop, V ;
Cotman, CW .
JOURNAL OF NEUROSCIENCE, 2005, 25 (17) :4217-4221
[4]   Oxidative modification of creatine kinase BB in Alzheimer's disease brain [J].
Aksenov, M ;
Aksenova, M ;
Butterfield, DA ;
Markesbery, WR .
JOURNAL OF NEUROCHEMISTRY, 2000, 74 (06) :2520-2527
[5]   Amyloid β-peptide(1-40)-mediated oxidative stress in cultured hippocampal neurons -: Protein carbonyl formation, CK BB expression, and the level of Cu, Zn, and Mn SOD mRNA [J].
Aksenov, MY ;
Aksenova, MV ;
Markesbery, WR ;
Butterfield, DA .
JOURNAL OF MOLECULAR NEUROSCIENCE, 1998, 10 (03) :181-192
[6]   Oxidation of cytosolic proteins and expression of creatine kinase BB in frontal lobe in different neurodegenerative disorders [J].
Aksenova, MV ;
Aksenov, MY ;
Payne, RM ;
Trojanowski, JQ ;
Schmidt, ML ;
Carney, JM ;
Butterfield, DA ;
Markesbery, WR .
DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 1999, 10 (02) :158-165
[7]   Protein oxidation and enzyme activity decline in old brown Norway rats are reduced by dietary restriction [J].
Aksenova, MV ;
Aksenov, MY ;
Carney, JM ;
Butterfield, DA .
MECHANISMS OF AGEING AND DEVELOPMENT, 1998, 100 (02) :157-168
[8]   Neurofilament proteins NF-L, NF-M and NF-H in brain of patients with Down syndrome and Alzheimer's disease [J].
Bajo, M ;
Yoo, BC ;
Cairns, N ;
Gratzer, M ;
Lubec, G .
AMINO ACIDS, 2001, 21 (03) :293-301
[9]   NEUROFILAMENT LIGHT AND POLYADENYLATED MESSENGER-RNA LEVELS ARE DECREASED IN AMYOTROPHIC-LATERAL-SCLEROSIS MOTOR-NEURONS [J].
BERGERON, C ;
BERICMASKAREL, K ;
MUNTASSER, S ;
WEYER, L ;
SOMERVILLE, MJ ;
PERCY, ME .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 1994, 53 (03) :221-230
[10]   Antioxidant-rich diets improve cerebellar physiology and motor learning in aged rats [J].
Bickford, PC ;
Gould, T ;
Briederick, L ;
Chadman, K ;
Pollock, A ;
Young, D ;
Shukitt-Hale, B ;
Joseph, J .
BRAIN RESEARCH, 2000, 866 (1-2) :211-217