Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex

被引:227
作者
Brecht, M [1 ]
Roth, A [1 ]
Sakmann, B [1 ]
机构
[1] Max Planck Inst Med Res, Dept Cell Physiol, D-69120 Heidelberg, Germany
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2003年 / 553卷 / 01期
关键词
D O I
10.1113/jphysiol.2003.044222
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Whole-cell voltage recordings were made in vivo from subsequently reconstructed pyramidal neurons (n = 30) in layer 3 (L3) and layer 2 (L2) of the barrel cortex of urethane-anaesthetised rats. Average resting membrane potentials were well below (15-40 mV) action potential (AP) initiation threshold. The average spontaneous AP activity (0.068 +/- 0.22 APs s(-1)) was low. Principal whisker (PW) deflections evoked postsynaptic potentials (PSPs) in almost all cells of a PW column but evoked AP activity (0.031 +/- 0.056 APs per PW stimulus 6 deg deflection) was low indicating 'sparse' coding by APs. Barrel-related cells (n = 16) have their soma located above a barrel and project their main axon through the barrel whereas septum-related cells (n = 8) are located above and project their main axon through the septum between barrels. Both classes of cell had broad subthreshold receptive fields (RFs) which comprised a PW and several (> 8) surround whiskers (SuW). Barrel-related cells had shorter PSP onset latencies (9.6 +/- 4.6 ms) and larger amplitude PW stimulus responses (9.1 +/- 4.5 mV) than septum-related cells (23.3 +/- 16.5 ms and 5.0 +/- 2.8 mV, respectively). The dendritic fields of barrel-related cells were restricted, in the horizontal plane, to the PW column width. Their axonal arbors projected horizontally into several SuW columns, preferentially those representing whiskers of the same row, suggesting that they are the major anatomical substrate for the broad subthreshold RFs. In barrel-related cells the response time course varied with whisker position and subthreshold RFs were highly dynamic, expanding in size from narrow single-whisker to broad multi-whisker RFs, elongated along rows within 10-150 ms following a deflection. The response time course in septum-related cells was much longer and almost independent of whisker position. Their broad subthreshold RF suggests that L2/3 cells integrate PSPs from several barrel columns. We conclude that the lemniscal (barrel-related) and paralemniscal (septum-related) afferent inputs remain anatomically and functionally segregated in L2/3.
引用
收藏
页码:243 / 265
页数:23
相关论文
共 43 条
[1]   Temporal frequency of whisker movement. II. Laminar organization of cortical representations [J].
Ahissar, E ;
Sosnik, R ;
Bagdasarian, K ;
Haidarliu, S .
JOURNAL OF NEUROPHYSIOLOGY, 2001, 86 (01) :354-367
[2]  
[Anonymous], 1995, BARREL CORTEX RODENT
[3]  
Armstrong-James M., 1995, CEREB CORTEX, V11, P333
[4]   FLOW OF EXCITATION WITHIN RAT BARREL CORTEX ON STRIKING A SINGLE VIBRISSA [J].
ARMSTRONGJAMES, M ;
FOX, K ;
DASGUPTA, A .
JOURNAL OF NEUROPHYSIOLOGY, 1992, 68 (04) :1345-1358
[5]   SPATIOTEMPORAL CONVERGENCE AND DIVERGENCE IN THE RAT S1 BARREL CORTEX [J].
ARMSTRONGJAMES, M ;
FOX, K .
JOURNAL OF COMPARATIVE NEUROLOGY, 1987, 263 (02) :265-281
[6]   Thalamocortical arbors extend beyond single cortical barrels: an in vivo intracellular tracing study in rat [J].
Arnold, PB ;
Li, CX ;
Waters, RS .
EXPERIMENTAL BRAIN RESEARCH, 2001, 136 (02) :152-168
[7]   WHOLE CELL RECORDING FROM NEURONS IN SLICES OF REPTILIAN AND MAMMALIAN CEREBRAL-CORTEX [J].
BLANTON, MG ;
LOTURCO, JJ ;
KRIEGSTEIN, AR .
JOURNAL OF NEUROSCIENCE METHODS, 1989, 30 (03) :203-210
[8]   Whisker maps of neuronal subclasses of the rat ventral posterior medial thalamus, identified by whole-cell voltage recording and morphological reconstruction [J].
Brecht, M ;
Sakmann, B .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 538 (02) :495-515
[9]   Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex [J].
Brecht, M ;
Sakmann, B .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 543 (01) :49-70
[10]  
CARVELL GE, 1990, J NEUROSCI, V10, P2638