The function of a TiO2 compact layer in dye-sensitized solar cells incorporating "Planar" organic dyes

被引:179
作者
Burke, Anthony [1 ]
Ito, Seigo [1 ]
Snaith, Henry [1 ]
Bach, Udo [2 ]
Kwiatkowski, Joe [3 ]
Graetzel, Michael [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Photon & Interfaces, Stn 6, CH-1015 Lausanne, Switzerland
[2] Monash Univ, ARC Australian Ctr Electromat Sci, Clayton, Vic 3800, Australia
[3] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2BW, England
关键词
D O I
10.1021/nl071588b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a device based study into the operation of liquid electrolyte dye-sensitized solar cells (DSSC's) using organic dyes. We find that, for these systems, it is entirely necessary to employ a compact TiO2 layer between the transparent fluorine doped SnO2 (FTO) anode and the electrolyte in order to reduce charge recombination losses. By incorporation of a compact layer, the device efficiency can be increased by over 160% under simulated full sun illumination and more than doubled at lower light intensities. This is strong evidence that the more widely employed ruthenium based sensitizers act as to "insulate" the anode against recombination losses and that many planar organic dyes employed in DSSC's could greatly benefit from the use of a compact TiO2 blocking layer. This is in strong contrast to DSSC's sensitized with ruthenium based systems, where the introduction of compact TiO2 has only marginal effects on conversion efficiencies.
引用
收藏
页码:977 / 981
页数:5
相关论文
共 17 条
[1]  
[Anonymous], CHEM COMMUN
[2]   Photoelectrochemical study of thin anatase TiO2 films prepared by metallorganic chemical vapor deposition [J].
Boschloo, GK ;
Goossens, A ;
Schoonman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :1311-1317
[3]   An electrical model of the dye-sensitized solar cell [J].
Ferber, J ;
Stangl, R ;
Luther, J .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1998, 53 (1-2) :29-54
[4]   Radiative and nonradiative excited state relaxation channels in squaric acid derivatives bearing differently sized donor substituents: A comparison of experiment and theory [J].
Gude, C ;
Rettig, W .
JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (34) :8050-8057
[5]   Molecular photovoltaics [J].
Hagfeldt, A ;
Grätzel, M .
ACCOUNTS OF CHEMICAL RESEARCH, 2000, 33 (05) :269-277
[6]   Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells [J].
Hara, K ;
Kurashige, M ;
Dan-oh, Y ;
Kasada, C ;
Shinpo, A ;
Suga, S ;
Sayama, K ;
Arakawa, H .
NEW JOURNAL OF CHEMISTRY, 2003, 27 (05) :783-785
[7]   High efficiency of dye-sensitized solar cells based on metal-free indoline dyes [J].
Horiuchi, T ;
Miura, H ;
Sumioka, K ;
Uchida, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (39) :12218-12219
[8]   Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells [J].
Ito, S ;
Liska, P ;
Comte, P ;
Charvet, RL ;
Péchy, P ;
Bach, U ;
Schmidt-Mende, L ;
Zakeeruddin, SM ;
Kay, A ;
Nazeeruddin, MK ;
Grätzel, M .
CHEMICAL COMMUNICATIONS, 2005, (34) :4351-4353
[9]   High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness [J].
Ito, Seigo ;
Zakeeruddin, Shaik M. ;
Humphry-Baker, Robin ;
Liska, Paul ;
Charvet, Raphael ;
Comte, Pascal ;
Nazeeruddin, Mmad K. ;
Pechy, Peter ;
Takata, Masakazu ;
Miura, Hidetoshi ;
Uchida, Satoshi ;
Graetzel, Michael .
ADVANCED MATERIALS, 2006, 18 (09) :1202-+
[10]  
JAGERWALDAU AA, 2006, 2006 IEEE 4 WORLD C, V2, P2481