UV-enhanced reactivation of a UV-damaged reporter gene suggests transcription-coupled repair is UV-inducible in human cells

被引:31
作者
Francis, MA [1 ]
Rainbow, AJ [1 ]
机构
[1] McMaster Univ, Dept Biol, Hamilton, ON L8S 4K1, Canada
关键词
D O I
10.1093/carcin/20.1.19
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The genetic disorders xeroderma pigmentosum (XP) and Cockayne syndrome (CS) exhibit deficiencies in the repair of UV-induced DNA damage. CS fibroblasts retain proficient nucleotide excision repair (NER) of inactive (or bulk) DNA, but are deficient in the transcription-coupled repair (TCR) of active genes. In contrast, XP complementation group C (XP-C) fibroblasts retain proficient TCR, but are deficient in bulk DNA repair. The remaining NER-deficient XP groups exhibit deficiencies in both repair pathways. Ad5HCMVsp1lacZ is a recombinant adenovirus vector that is unable to replicate in human fibroblasts, but can efficiently infect and express the P-galactosidase reporter gene in these cells. We have examined the host cell reactivation (HCR) of beta-galactosidase activity for UV-irradiated Ad5HCMVsp1lacZ in non-irradiated and UV-irradiated normal, XP-B, XP-C, XP-D, XP-F, XP-G, CS-A and CS-B fibroblasts. HCR of P-galactosidase activity for UV-irradiated Ad5HCMVsp1lacZ was reduced in non-irradiated cells from each of the repair-deficient groups examined (including XP-C) relative to that in non-irradiated normal cells. Prior irradiation of cells with low UV fluences resulted in an enhancement of HCR for normal and XP-C strains, but not for the remaining XP and CS strains. HCR of the UV-damaged reporter gene in UV-irradiated XP and CS strains was similar to measurements of TCR reported previously for these cells. These results suggest that UV treatment results in an induced repair of W-damaged DNA in the transcribed strand of an active gene in XP-C and normal cells through an enhancement of TCR or a mechanism which involves the TCR pathway.
引用
收藏
页码:19 / 26
页数:8
相关论文
共 64 条
[1]   UV IRRADIATION AND HEAT-SHOCK MEDIATE JNK ACTIVATION VIA ALTERNATE PATHWAYS [J].
ADLER, V ;
SCHAFFER, A ;
KIM, J ;
DOLAN, L ;
RONAI, Z .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (44) :26071-26077
[2]  
ADLER V, 1995, CELL GROWTH DIFFER, V6, P1437
[3]   ENHANCED REACTIVATION AND MUTAGENESIS OF UV-IRRADIATED ADENOVIRUS IN NORMAL HUMAN-FIBROBLASTS [J].
BENNETT, CB ;
RAINBOW, AJ .
MUTAGENESIS, 1988, 3 (02) :157-164
[4]   SURVIVAL OF UV-IRRADIATED MAMMALIAN-CELLS CORRELATES WITH EFFICIENT DNA-REPAIR IN AN ESSENTIAL GENE [J].
BOHR, VA ;
OKUMOTO, DS ;
HANAWALT, PC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (11) :3830-3833
[5]   DNA-REPAIR - ENGAGEMENT WITH TRANSCRIPTION [J].
BOOTSMA, D ;
HOEIJMAKERS, JHJ .
NATURE, 1993, 363 (6425) :114-115
[6]   UV-ENHANCED REACTIVATION OF UV-DAMAGED SV40 IS DUE TO THE RESTORATION OF VIRAL EARLY GENE-FUNCTION [J].
BROWN, TC ;
CERUTTI, PA .
MUTATION RESEARCH, 1989, 218 (03) :211-217
[7]   RETRACTED: Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G (Retracted Article. See vol 308, pg 1740, 2005) [J].
Cooper, PK ;
Nouspikel, T ;
Clarkson, SG ;
Leadon, SA .
SCIENCE, 1997, 275 (5302) :990-993
[8]  
DAY RS, 1974, CANCER RES, V34, P1965
[9]   TRANSCRIPT CLEAVAGE BY RNA-POLYMERASE-II ARRESTED BY A CYCLOBUTANE PYRIMIDINE DIMER IN THE DNA-TEMPLATE [J].
DONAHUE, BA ;
YIN, S ;
TAYLOR, JS ;
REINES, D ;
HANAWALT, PC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (18) :8502-8506
[10]   DUAL ROLE OF TFIIH IN DNA EXCISION-REPAIR AND IN TRANSCRIPTION BY RNA-POLYMERASE-II [J].
DRAPKIN, R ;
REARDON, JT ;
ANSARI, A ;
HUANG, JC ;
ZAWEL, L ;
AHN, KJ ;
SANCAR, A ;
REINBERG, D .
NATURE, 1994, 368 (6473) :769-772