Hic-5-reduced cell spreading on fibronectin: Competitive effects between paxillin and Hic-5 through interaction with focal adhesion kinase

被引:85
作者
Nishiya, N
Tachibana, K
Shibanuma, M
Mashimo, JI
Nose, K
机构
[1] Showa Univ, Sch Pharmaceut Sci, Dept Microbiol, Shinagawa Ku, Tokyo, Japan
[2] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Canc Immunol & AIDS, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Dept Med, Boston, MA 02115 USA
关键词
D O I
10.1128/MCB.21.16.5332-5345.2001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hic-5 is a paxillin homologue that is localized to focal adhesion complexes. Hic-5 and paxillin share structural homology and interacting factors such as focal adhesion kinase (FAK), Pyk2/CAK beta /RAFTK, and PTP-PEST. Here, we showed that Hic-5 inhibits integrin-mediated cell spreading on fibronectin in a competitive manner with paxillin in NIH 3T3 cells. The overexpression of Hic-5 sequestered FAK from paxillin, reduced tyrosine phosphorylation of paxillin and FAK, and prevented paxillin-Crk complex formation. In addition, Hic-5-mediated inhibition of spreading was not observed in mouse embryo fibroblasts (MEFs) derived from FAK(-/-) mice. The activity of c-Src following fibronectin stimulation was decreased by about 30% in Hic-5-expressing cells, and the effect of Hic-5 was restored by the overexpression of FAK and the constitutively active forms of Rho-family GTPases, Rac1 V12 and Cdc42 V12, but not RhoA V14. These observations suggested that Hic-5 inhibits cell spreading through competition with paxillin for FAK and subsequent prevention of downstream signal transduction. Moreover, expression of antisense Hic-5 increased spreading in primary MEFs. These results suggested that the counterbalance of paxillin and Hic-5 expression may be a novel mechanism regulating integrin-mediated signal transduction.
引用
收藏
页码:5332 / 5345
页数:14
相关论文
共 86 条
[1]   Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration, and cytokinesis in fibroblasts [J].
Angers-Loustau, A ;
Côté, JF ;
Charest, A ;
Dowbenko, D ;
Spencer, S ;
Lasky, LA ;
Tremblay, ML .
JOURNAL OF CELL BIOLOGY, 1999, 144 (05) :1019-1031
[2]   IDENTIFICATION AND CHARACTERIZATION OF A NOVEL RELATED ADHESION FOCAL TYROSINE KINASE (RAFTK) FROM MEGAKARYOCYTES AND BRAIN [J].
AVRAHAM, S ;
LONDON, R ;
FU, YG ;
OTA, S ;
HIREGOWDARA, D ;
LI, JZ ;
JIANG, SX ;
PASZTOR, LN ;
WHITE, RA ;
GROOPMAN, JE ;
AVRAHAM, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (46) :27742-27751
[3]   CHARACTERIZATION OF TYROSINE PHOSPHORYLATION OF PAXILLIN IN-VITRO BY FOCAL ADHESION KINASE [J].
BELLIS, SL ;
MILLER, JT ;
TURNER, CE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (29) :17437-17441
[4]   IDENTIFICATION AND CHARACTERIZATION OF A HIGH-AFFINITY INTERACTION BETWEEN V-CRK AND TYROSINE-PHOSPHORYLATED PAXILLIN IN CT10-TRANSFORMED FIBROBLASTS [J].
BIRGE, RB ;
FAJARDO, JE ;
REICHMAN, C ;
SHOELSON, SE ;
SONGYANG, Z ;
CANTLEY, LC ;
HANAFUSA, H .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (08) :4648-4656
[5]  
BOCKHOLT SM, 1993, J BIOL CHEM, V268, P14565
[6]   Paxillin LD motifs may define a new family of protein recognition domains [J].
Brown, MC ;
Curtis, MS ;
Turner, CE .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (08) :677-678
[7]   Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding [J].
Brown, MC ;
Perrotta, JA ;
Turner, CE .
JOURNAL OF CELL BIOLOGY, 1996, 135 (04) :1109-1123
[8]  
BURRIDGE K, 1988, ANNU REV CELL BIOL, V4, P487, DOI 10.1146/annurev.cb.04.110188.002415
[9]  
BURRIDGE K, 1992, J CELL BIOL, V119, P898
[10]   INTEGRINS AND SIGNAL-TRANSDUCTION PATHWAYS - THE ROAD TAKEN [J].
CLARK, EA ;
BRUGGE, JS .
SCIENCE, 1995, 268 (5208) :233-239