Scaffolds based on degradable alginate hydrogels and poly(lactide-co-glycolide) microspheres for stem cell culture

被引:167
作者
Ashton, Randolph S.
Banerjee, Akhilesh
Punyani, Supriya
Schaffer, David V.
Kane, Ravi S. [1 ]
机构
[1] Rensselaer Polytech Inst, Howard P Isermann Dept Chem & Biol Engn, Troy, NY 12180 USA
[2] Univ Calif Berkeley, Helen Wills Neurosci Inst, Dept Chem Engn, Berkeley, CA 94720 USA
关键词
alginate; stem cells; hydrogel; degradation; controlled release;
D O I
10.1016/j.biomaterials.2007.08.038
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We describe a method for creating alginate hydrogels with adjustable degradation rates that can be used as scaffolds for stem cells. Alginate hydrogels have been widely tested as three-dimensional constructs for cell culture, cell carriers for implantation, and in tissue regeneration applications; however, alginate hydrogel implants can take months to disappear from implantation sites because mammals do not produce endogenous alginases. By incorporating poly(lactide-co-glycolide) (PLGA) microspheres loaded with alginate lyase into alginate hydrogels, we demonstrate that alginate hydrogels can be enzymatically degraded in a controlled and tunable fashion. We demonstrate that neural progenitor cells (NPCs) can be cultured and expanded in vitro in this degradable alginate hydrogel system. Moreover, we observe a significant increase in the expansion rate of NPCs cultured in degrading alginate hydrogels versus NPCs cultured in standard, i.e. non-degrading, alginate hydrogels. Degradable alginate hydrogels encapsulating stem cells may be widely applied to develop novel therapies for tissue regeneration. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5518 / 5525
页数:8
相关论文
共 41 条
[1]   Regulating bone formation via controlled scaffold degradation [J].
Alsberg, E ;
Kong, HJ ;
Hirano, Y ;
Smith, MK ;
Albeiruti, A ;
Mooney, DJ .
JOURNAL OF DENTAL RESEARCH, 2003, 82 (11) :903-908
[2]   Engineering growing tissues [J].
Alsberg, E ;
Anderson, KW ;
Albeiruti, A ;
Rowley, JA ;
Mooney, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12025-12030
[3]   Alginate hydrogels as biomaterials [J].
Augst, Alexander D. ;
Kong, Hyun Joon ;
Mooney, David J. .
MACROMOLECULAR BIOSCIENCE, 2006, 6 (08) :623-633
[4]   Degradation of partially oxidized alginate and its potential application for tissue engineering [J].
Bouhadir, KH ;
Lee, KY ;
Alsberg, E ;
Damm, KL ;
Anderson, KW ;
Mooney, DJ .
BIOTECHNOLOGY PROGRESS, 2001, 17 (05) :945-950
[5]   CONTROLLED DELIVERY SYSTEMS FOR PROTEINS BASED ON POLY(LACTIC GLYCOLIC ACID) MICROSPHERES [J].
COHEN, S ;
YOSHIOKA, T ;
LUCARELLI, M ;
HWANG, LH ;
LANGER, R .
PHARMACEUTICAL RESEARCH, 1991, 8 (06) :713-720
[6]   Cardiac tissue engineering - Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds [J].
Dar, A ;
Shachar, M ;
Leor, J ;
Cohen, S .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 80 (03) :305-312
[7]   Hydrogels for tissue engineering: scaffold design variables and applications [J].
Drury, JL ;
Mooney, DJ .
BIOMATERIALS, 2003, 24 (24) :4337-4351
[8]  
Ertesvåg H, 1998, J BACTERIOL, V180, P3779
[9]   SURVIVAL AND DIFFERENTIATION OF ADULT NEURONAL PROGENITOR CELLS TRANSPLANTED TO THE ADULT BRAIN [J].
GAGE, FH ;
COATES, PW ;
PALMER, TD ;
KUHN, HG ;
FISHER, LJ ;
SUHONEN, JO ;
PETERSON, DA ;
SUHR, ST ;
RAY, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (25) :11879-11883
[10]   Mammalian neural stem cells [J].
Gage, FH .
SCIENCE, 2000, 287 (5457) :1433-1438