Protein folds propelled by diversity

被引:112
作者
Paoli, M [1 ]
机构
[1] Univ Cambridge, Dept Biochem, Cambridge CB2 1QW, England
基金
英国生物技术与生命科学研究理事会;
关键词
beta-propeller; structural comparison; structure-based sequence alignment; beta-sheet;
D O I
10.1016/S0079-6107(01)00007-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Many proteins involved in key biological processes are modular in nature. A group of these, the beta -propeller proteins, fold by packing 4-stranded beta -sheets in a circular array. The members of this group are increasingly numerous and, although their modular building blocks all preserve the same basic conformation, they do not have similar sequences. These proteins have extreme functional and phylogenetic diversity. Here. features of the beta -propeller fold are reviewed through comparisons of available structural coordinates. Structure-based sequence alignments combined with analyses of superpositions of individual modular units reveal conserved general features such as hydrogen bonds, beta -turns and positions of hydrophobic contacts. The lack of significant sequence identity is compensated by sets of interactions which stabilise the fold differently in distinct structures. Re-occurring aspartates make contacts to exposed backbone amides in turns or peptide connections within the same sheet. The sole factor responsible for the number of sheets that assemble in the array is the size of the hydrophobic residues that pack into the cores between the sheets. Whilst there is no overall sequence conservation, it may be possible to detect new members of this fold through sequence searches that take into account the repeated nature of the modular assembly as well as the positions of hydrophobic residues and H-bonding side chains. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:103 / 130
页数:28
相关论文
共 66 条
[1]   Structure of the Escherichia coli TolB protein determined by MAD methods at 1.95 Å resolution [J].
Abergel, C ;
Bouveret, E ;
Claverie, JM ;
Brown, K ;
Rigal, A ;
Lazdunski, C ;
Bénédetti, H .
STRUCTURE, 1999, 7 (10) :1291-1300
[2]   The kelch repeat superfamily of proteins: propellers of cell function [J].
Adams, J ;
Kelso, R ;
Cooley, L .
TRENDS IN CELL BIOLOGY, 2000, 10 (01) :17-24
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   Cytochrome cd(1) structure: Unusual haem environments in a nitrite reductase and analysis of factors contributing to beta-propeller folds [J].
Baker, SC ;
Saunders, NFW ;
Willis, AC ;
Ferguson, SJ ;
Hajdu, J ;
Fulop, V .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 269 (03) :440-455
[5]   DETERMINANTS OF A PROTEIN FOLD - UNIQUE FEATURES OF THE GLOBIN AMINO-ACID-SEQUENCES [J].
BASHFORD, D ;
CHOTHIA, C ;
LESK, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 196 (01) :199-216
[6]   Tachylectin-2:: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus [J].
Beisel, HG ;
Kawabata, S ;
Iwanaga, S ;
Huber, R ;
Bode, W .
EMBO JOURNAL, 1999, 18 (09) :2313-2322
[7]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[8]   DROSOPHILA KELCH MOTIF IS DERIVED FROM A COMMON ENZYME FOLD [J].
BORK, P ;
DOOLITTLE, RF .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 236 (05) :1277-1282
[9]   The TIM barrel - the most frequently occurring folding motif in proteins [J].
Branden, Carl-Ivar .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1991, 1 (06) :978-983
[10]  
Brown K, 2000, NAT STRUCT BIOL, V7, P191