CBF, BOLD, CBV, and CMRO2 fMRI signal temporal dynamics at 500-msec resolution

被引:55
作者
Shen, Qiang [1 ]
Ren, Hongxia [1 ]
Duong, Timothy Q. [1 ]
机构
[1] Emory Univ, Yerkes Imaging Ctr, Dept Neurol & Radiol, Div Neurosci,Yerkes Natl Primate Res Ctr, Atlanta, GA 30329 USA
关键词
hemodynamic coupling; brain mapping; cerebral blood flow; cerebral blood volume;
D O I
10.1002/jmri.21203
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To investigate the temporal dynamics of blood oxygenation level-dependent (BOLD), cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of oxygen (CMRO2) changes due to forepaw stimulation with 500-msec resolution in a single setting. Materials and Methods: Forepaw stimulation and hypercapnic challenge on rats were studied. CBF and BOLD functional MRI (fMRI) were measured using the pseudo-continuous arterial spin-labeling technique at 500-msec resolution. CBV fMRI was measured using monocrystalline iron-oxide particles following CBF and BOLD measurements in the same animals. CMRO2 change was estimated via the biophysical BOLD model with hypercapnic calibration. Percent changes and onset times were analyzed for the entire forepaw somatosensory cortices and three operationally defined cortical segments, denoted Layers I-III, IV-V, and VI. Results: BOLD change was largest in Layers I-III, whereas CBF, CBV, and CMRO2 changes were largest in Layers IV-V. Among all fMRI signals in all layers, only the BOLD signal in Layers I-III showed a poststimulus undershoot. CBF and CBV dynamics were similar. Closer inspection showed that CBV increased slightly first (P < 0.05), but was slow to peak. CBF increased second, but peaked first. BOLD significantly lagged both CBF and CBV (P < 0.05). Conclusion: This study provides important temporal dynamics of multiple fMRI signals at high temporal resolution in a single setting.
引用
收藏
页码:599 / 606
页数:8
相关论文
共 44 条
[1]   Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats [J].
Ances, BM ;
Buerk, DG ;
Greenberg, JH ;
Detre, JA .
NEUROSCIENCE LETTERS, 2001, 306 (1-2) :106-110
[2]   MR CONTRAST DUE TO INTRAVASCULAR MAGNETIC-SUSCEPTIBILITY PERTURBATIONS [J].
BOXERMAN, JL ;
HAMBERG, LM ;
ROSEN, BR ;
WEISSKOFF, RM .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :555-566
[3]   Dynamics of blood flow and oxygenation changes during brain activation: The balloon model [J].
Buxton, RB ;
Wong, EC ;
Frank, LR .
MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (06) :855-864
[4]   Calibrated functional MRI: Mapping the dynamics of oxidative metabolism [J].
Davis, TL ;
Kwong, KK ;
Weisskoff, RM ;
Rosen, BR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (04) :1834-1839
[5]  
Duong TQ, 2000, MAGN RESON MED, V43, P383, DOI 10.1002/(SICI)1522-2594(200003)43:3<383::AID-MRM10>3.0.CO
[6]  
2-Q
[7]   Localized cerebral blood flow response at submillimeter columnar resolution [J].
Duong, TQ ;
Kim, DS ;
Ugurbil, K ;
Kim, SG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (19) :10904-10909
[8]   Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient-echo and spin-echo fMRI with suppression of blood effects [J].
Duong, TQ ;
Yacoub, E ;
Adriany, G ;
Hu, XP ;
Ugurbil, K ;
Kim, SG .
MAGNETIC RESONANCE IN MEDICINE, 2003, 49 (06) :1019-1027
[9]   Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man [J].
Frahm, J ;
Kruger, G ;
Merboldt, KD ;
Kleinschmidt, A .
MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (02) :143-148
[10]   Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex [J].
Hoge, RD ;
Atkinson, J ;
Gill, B ;
Crelier, GR ;
Marrett, S ;
Pike, GB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (16) :9403-9408