Probing the performance limits of the Escherichia coli metabolic network subject to gene additions or deletions

被引:85
作者
Burgard, AP [1 ]
Maranas, CD [1 ]
机构
[1] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
关键词
E. coli metabolism; flux balance models; gene deletion; gene recombination;
D O I
10.1002/bit.1127
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
An optimization-based procedure for studying the response of metabolic networks after gene knockouts or additions is introduced and applied to a linear flux balance analysis (FBA) Escherichia coli model. Both the gene addition problem of optimally selecting which foreign genes to recombine into E. coli, as well as the gene deletion problem of removing a given number of existing ones, are formulated as mixed-integer optimization problems using binary 0-1 variables. The developed modeling and optimization framework is tested by investigating the effect of gene deletions on biomass production and addressing the maximum theoretical production of the 20 amino acids for aerobic growth on glucose and acetate substrates. In the gene deletion study, the smallest gene set necessary to achieve maximum biomass production in E. coli is determined for aerobic growth on glucose. The subsequent gene knockout analysis indicates that biomass production decreases monotonically, rendering the metabolic network incapable of growth after only 18 gene deletions. In the gene addition study, the E. coli flux balance model is augmented with 3,400 non-E. coli reactions from the KEGG database to form a multispecies model. This model is referred to as the Universal model. This study reveals that the maximum theoretical production of six amino acids could be improved by the addition of only one or two genes to the native amino acid production pathway of E. coli, even though the model could choose from 3,400 foreign reaction candidates. Specifically, manipulation of the arginine production pathway showed the most promise with 8.75% and 9.05% predicted increases with the addition of genes for growth on glucose and acetate, respectively. The mechanism of all suggested enhancements is either by: 1) improving the energy efficiency and/or 2) increasing the carbon conversion efficiency of the production route. (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:364 / 375
页数:12
相关论文
共 67 条
[1]   MODIFICATION OF CENTRAL METABOLIC PATHWAY IN ESCHERICHIA-COLI TO REDUCE ACETATE ACCUMULATION BY HETEROLOGOUS EXPRESSION OF THE BACILLUS-SUBTILIS ACETOLACTATE SYNTHASE GENE [J].
ARISTIDOU, AA ;
SAN, KY ;
BENNETT, GN .
BIOTECHNOLOGY AND BIOENGINEERING, 1994, 44 (08) :944-951
[2]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[3]   EFFECT OF MODIFIED GLUCOSE-UPTAKE USING GENETIC-ENGINEERING TECHNIQUES ON HIGH-LEVEL RECOMBINANT PROTEIN-PRODUCTION IN ESCHERICHIA-COLI DENSE CULTURES [J].
CHOU, CH ;
BENNETT, GN ;
SAN, KY .
BIOTECHNOLOGY AND BIOENGINEERING, 1994, 44 (08) :952-960
[4]   OVERPRODUCTION OF GLYCOGEN IN ESCHERICHIA-COLI BLOCKED IN THE ACETATE PATHWAY IMPROVES CELL-GROWTH [J].
DEDHIA, NN ;
HOTTIGER, T ;
BAILEY, JE .
BIOTECHNOLOGY AND BIOENGINEERING, 1994, 44 (01) :132-139
[5]   Inverse flux analysis for reduction of acetate excretion in Escherichia coli [J].
Delgado, J ;
Liao, JC .
BIOTECHNOLOGY PROGRESS, 1997, 13 (04) :361-367
[6]   Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions [J].
Jeremy S Edwards ;
Bernhard O Palsson .
BMC Bioinformatics, 1 (1)
[7]   The Escherichia coli MG1655 in silico metabolic genotype:: Its definition, characteristics, and capabilities [J].
Edwards, JS ;
Palsson, BO .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5528-5533
[8]  
EDWARDS JS, 1999, METAB ENG, P13
[9]  
Ensley B. D., 1985, United States Patent, Patent No. 4520103
[10]   Analysis and design of metabolic reaction networks via mixed-integer linear optimization [J].
Hatzimanikatis, V ;
Floudas, CA ;
Bailey, JE .
AICHE JOURNAL, 1996, 42 (05) :1277-1292