p53 activates the mitochondrial death pathway and apoptosis of ventricular myocytes independent of de novo gene transcription

被引:49
作者
Regula, KM [1 ]
Kirshenbaum, LA [1 ]
机构
[1] Univ Manitoba, St Boniface Gen Hosp Res Ctr, Inst Cardiovasc Sci, Fac Med Dept Physiol, Winnipeg, MB R2H 2A6, Canada
基金
加拿大健康研究院;
关键词
ventricular myocytes; p53; apoptosis; caspases; cytochrome c;
D O I
10.1006/jmcc.2001.1405
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
K. M. REGULA AND L. A. KIRSHENBAUM, p53 Activates the Mitochondrial Death Pathway and Apoptosis of Ventricular Myocytes Independent of de novo Gene Transcription. Journal of Molecular and Cellular Cardiology (2001) 33, 1435-1445. The tumor suppressor p53 is known to regulate gene transcription and apoptosis in mammalian cells. In the present study we ascertain whether these events are mutually dependent and obligatorily linked for induction of apoptosis of ventricular myocytes. Adenovirus mediated gene delivery of wild p53 (p53WT) or a mutant form of p53 (p53MT) defective for gene transcription to ventricular myocytes was confirmed by Western blot analysis. A significant increase in the p53 dependent genes Bax and MDM2 was observed with p53WT but not p53MT, Nuclear DNA visualized by agarose gel electrophoresis revealed nucleosomal DNA laddering in the presence of either p53 protein. Apoptosis was substantiated by Hoechst 33258 nuclear staining. Perturbations to mitochondria consistent with the mitochondrial death pathway, including loss of mitochondrial transmembrane potential Delta psi (m) and cytochrome c release were observed with p53WT and p53MT. An increase in caspase 3-like activity was noted with either p53WT or p53MT protein that was suppressed by the caspase 3 inhibitor Ac-DEVD-CHO. To our knowledge the experiments described here provide the first indication that p53 activates the mitochondrial death pathway and provokes apoptosis of ventricular myocytes independent of DNA binding and de novo gene activation. (C) 2001 Academic Press.
引用
收藏
页码:1435 / 1445
页数:11
相关论文
共 44 条
[1]   Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo [J].
Agah, R ;
Kirshenbaum, LA ;
Abdellatif, M ;
Truong, LD ;
Chakraborty, S ;
Michael, LH ;
Schneider, MD .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (11) :2722-2728
[2]   IMMUNOCHEMICAL ANALYSIS OF MYOSIN HEAVY-CHAIN DURING AVIAN MYOGENESIS INVIVO AND INVITRO [J].
BADER, D ;
MASAKI, T ;
FISCHMAN, DA .
JOURNAL OF CELL BIOLOGY, 1982, 95 (03) :763-770
[3]   Mitochondria and cell death - Mechanistic aspects and methodological issues [J].
Bernardi, P ;
Scorrano, L ;
Colonna, R ;
Petronilli, V ;
Di Lisa, F .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 264 (03) :687-701
[4]   The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes [J].
Bialik, S ;
Cryns, VL ;
Drincic, A ;
Miyata, S ;
Wollowick, AL ;
Srinivasan, A ;
Kitsis, RN .
CIRCULATION RESEARCH, 1999, 85 (05) :403-414
[5]   Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53 [J].
Bialik, S ;
Geenen, DL ;
Sasson, IE ;
Cheng, R ;
Horner, JW ;
Evans, SM ;
Lord, EM ;
Koch, CJ ;
Kitsis, RN .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (06) :1363-1372
[6]   The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release [J].
Bradham, CA ;
Qian, T ;
Streetz, K ;
Trautwein, C ;
Brenner, DA ;
Lemasters, JJ .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (11) :6353-6364
[7]   Interaction of CED-4 with CED-3 and CED-9: A molecular framework for cell death [J].
Chinnaiyan, AM ;
ORourke, K ;
Lane, BR ;
Dixit, VM .
SCIENCE, 1997, 275 (5303) :1122-1126
[8]  
Cregan SP, 1999, J NEUROSCI, V19, P7860
[9]   p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53 [J].
Davison, TS ;
Vagner, C ;
Kaghad, M ;
Ayed, A ;
Caput, D ;
Arrowsmith, CH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (26) :18709-18714
[10]   Bcl-2 activates the transcription factor NFκB through the degradation of the cytoplasmic inhibitor IκBα [J].
de Moissac, D ;
Mustapha, S ;
Greenberg, AH ;
Kirshenbaum, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (37) :23946-23951