The diameter of long-range percolation clusters on finite cycles

被引:68
作者
Benjamini, I
Berger, N [1 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Microsoft Corp, Res, Redmond, WA 98052 USA
[3] Weizmann Inst Sci, Redmond, WA 98052 USA
[4] Hebrew Univ Jerusalem, IL-91905 Jerusalem, Israel
关键词
D O I
10.1002/rsa.1022
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Bounds for the diameter and expansion of the graphs created by long-range percolation on the cycle Z/NZ are given. (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:102 / 111
页数:10
相关论文
共 17 条
[1]  
AIZENMAN M, 1998, COMMUN MATH PHYS, V107, P611
[2]  
ALDOUS D, 2000, UNPUB REVERSIBLE MAR
[3]  
BENJAMINI I, 2000, GEOMETRY UNIFORM SPA
[4]  
BENJAMINI I, 2000, EXOTIC VOLUME GROWTH
[5]  
BERGER N, 2000, TRANSIENCE RECURRENC
[6]  
BISKUP M, 2001, PREPRINT
[7]  
COPPERSMITH D, 2001, DIAMETER ONE DIMENSI
[8]   UNIQUENESS OF THE INFINITE COMPONENT IN A RANDOM GRAPH WITH APPLICATIONS TO PERCOLATION AND SPIN-GLASSES [J].
GANDOLFI, A ;
KEANE, MS ;
NEWMAN, CM .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 92 (04) :511-527
[9]  
Janson S, 2000, WIL INT S D, DOI 10.1002/9781118032718
[10]   Small-world networks: Links with long-tailed distributions [J].
Jespersen, S ;
Blumen, A .
PHYSICAL REVIEW E, 2000, 62 (05) :6270-6274