Diffusion tensor imaging study of the middle cerebellar peduncles in patients with schizophrenia

被引:35
作者
Okugawa, G [1 ]
Nobuhara, K [1 ]
Sugimoto, T [1 ]
Kinoshita, T [1 ]
机构
[1] Kansai Med Univ, Dept Neuropsychiat, Osaka 5708506, Japan
关键词
cerebellum; cerebellar peduncle; circuit; diffusion tensor imaging; fractional anisotropy; mean diffusivity; schizophrenia;
D O I
10.1080/14734220510007879
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recent evidence from neuroimaging studies suggests that neural dysfunction is involved in the pathophysiology of schizophrenia. Diffusion tensor imaging (DTI) is a technique that has the potential to detect subtle disruptions of neural connectivity. Fractional anisotropy (FA), which is measured by DTI, is a measure of the directionality of diffusion anisotropy. Decrease in FA indicates abnormalities of white matter due to increased water diffusion accompanied by an increase in extracellular space. In the literature, previous studies reported that patients with schizophrenia showed widespread lower FA in the white matter. These findings suggest that patients with schizophrenia have microstructural lesions in the cerebral white matter. We used DTI to determine whether neural connectivity was disturbed in the middle cerebellar peduncles in schizophrenic subjects. We found a significant FA reduction in the middle cerebellar peduncle in patients with schizophrenia. Therefore, neural disconnectivity between the cerebellum and cerebrum was considered present in patients with schizophrenia and may be involved in the pathology of schizophrenia. This review provides current findings regarding DTI study on the cerebellar peduncle in patients with schizophrenia.
引用
收藏
页码:123 / 127
页数:5
相关论文
共 29 条
[1]   Abnormal brain white matter in schizophrenia: a diffusion tensor imaging study [J].
Agartz, I ;
Andersson, JLR ;
Skare, S .
NEUROREPORT, 2001, 12 (10) :2251-2254
[2]   Defining the phenotype of schizophrenia: Cognitive dysmetria and its neural mechanisms [J].
Andreasen, NC ;
Nopoulos, P ;
O'Leary, DS ;
Miller, DD ;
Wassink, T ;
Flaum, L .
BIOLOGICAL PSYCHIATRY, 1999, 46 (07) :908-920
[3]   Schizophrenia and cognitive dysmetria: A positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry [J].
Andreasen, NC ;
OLeary, DS ;
Cizadlo, T ;
Arndt, S ;
Rezai, K ;
Ponto, LLB ;
Watkins, GL ;
Hichwa, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (18) :9985-9990
[4]  
[Anonymous], 2000, DIAGN STAT MAN MENT
[5]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
[6]   ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03) :247-254
[7]   MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia [J].
Buchsbaum, MS ;
Tang, CY ;
Peled, S ;
Gudbjartsson, H ;
Lu, DF ;
Hazlett, EA ;
Downhill, J ;
Haznedar, M ;
Fallon, JH ;
Atlas, SW .
NEUROREPORT, 1998, 9 (03) :425-430
[8]   Structural disconnectivity in schizophrenia: a diffusion tensor magnetic resonance imaging study [J].
Burns, J ;
Job, D ;
Bastin, ME ;
Whalley, H ;
MacGillivray, T ;
Johnstone, EC ;
Lawrie, SM .
BRITISH JOURNAL OF PSYCHIATRY, 2003, 182 :439-443
[9]  
EOLKIN A, 2003, AM J PSYCHIAT, V160, P572
[10]   Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study [J].
Foong, J ;
Maier, M ;
Clark, CA ;
Barker, GJ ;
Miller, DH ;
Ron, MA .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2000, 68 (02) :242-244