Apoptosis induced by replication inhibitors in Chk1-depleted cells is dependent upon the helicase cofactor Cdc45

被引:37
作者
Rodriguez, R. [1 ]
Gagou, M. E. [1 ]
Meuth, M. [1 ]
机构
[1] Univ Sheffield, Sch Med & Biomed Sci, Inst Canc Studies, Sheffield S10 2RX, S Yorkshire, England
关键词
DNA damage response; apoptosis; S-phase checkpoints; DNA replication;
D O I
10.1038/cdd.2008.4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Checkpoint kinase 1 (Chk1) responds to disruption of DNA replication to maintain the integrity of stalled forks, promote homologous recombination-mediated repair of replication fork lesions, and control inappropriate firing of replication origins. This response is essential for viability as replication inhibitors trigger apoptosis in S-phase cells depleted of Chk1. Given the complex network of cellular responses controlled by Chk1, our aim was to determine which of these protect cells from apoptosis following replication stress. Work with cell-free systems has shown that RPA-ssDNA complex forms following replication inhibition through the uncoupling of replication and helicase complexes. Here we show that replication protein A (RPA) foci form in cells treated with replication inhibitors and that the number of foci dramatically increases together with hyperphosphorylation of RPA34 in Chk1-depleted cells in advance of the induction of apoptosis. RPA foci, RPA34 hyperphosphorylation, and apoptosis were suppressed by siRNA-mediated knockdown of Cdc45, an essential replication helicase cofactor required for both the initiation and elongation steps of DNA replication. In contrast, loss of p21, a negative effector of origin firing, stimulates both the accumulation of RPA foci and apoptosis. Taken together, these results suggest that the loss of control of replication origin firing following Chk1 depletion triggers the accumulation of the RPA-ssDNA complex and apoptosis when replication is blocked.
引用
收藏
页码:889 / 898
页数:10
相关论文
共 38 条
[1]   ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation [J].
Ball, HL ;
Myers, JS ;
Cortez, D .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (05) :2372-2381
[2]   DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis [J].
Bartkova, J ;
Horejsi, Z ;
Koed, K ;
Krämer, A ;
Tort, F ;
Zieger, K ;
Guldberg, P ;
Sehested, M ;
Nesland, JM ;
Lukas, C ;
Orntoft, T ;
Lukas, J ;
Bartek, J .
NATURE, 2005, 434 (7035) :864-870
[3]   ATM is required for the cellular response to thymidine induced replication fork stress [J].
Bolderson, E ;
Scorah, J ;
Helleday, T ;
Smythe, C ;
Meuth, M .
HUMAN MOLECULAR GENETICS, 2004, 13 (23) :2937-2945
[4]   Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance [J].
Brown, EJ ;
Baltimore, D .
GENES & DEVELOPMENT, 2003, 17 (05) :615-628
[5]   Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint [J].
Byun, TS ;
Pacek, M ;
Yee, MC ;
Walter, JC ;
Cimprich, KA .
GENES & DEVELOPMENT, 2005, 19 (09) :1040-1052
[6]   Ribonucleotide reductase, a possible agent in deoxyribonucleotide pool asymmetries induced by hypoxia [J].
Chimploy, K ;
Tassotto, ML ;
Mathews, CK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (50) :39267-39271
[7]   Chk1 is essential for tumor cell viability following activation of the replication checkpoint [J].
Cho, SH ;
Toouli, CD ;
Fujii, GH ;
Crain, C ;
Parry, D .
CELL CYCLE, 2005, 4 (01) :131-139
[8]   Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints [J].
Cliby, WA ;
Roberts, CJ ;
Cimprich, KA ;
Stringer, CM ;
Lamb, JR ;
Schreiber, SL ;
Friend, SH .
EMBO JOURNAL, 1998, 17 (01) :159-169
[9]   DNA replication defects, spontaneous DNA damage, and ATM-dependent checkpoint activation in replication protein A-deficient cells [J].
Dodson, GE ;
Shi, YL ;
Tibbetts, RS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (32) :34010-34014
[10]   WAF1, A POTENTIAL MEDIATOR OF P53 TUMOR SUPPRESSION [J].
ELDEIRY, WS ;
TOKINO, T ;
VELCULESCU, VE ;
LEVY, DB ;
PARSONS, R ;
TRENT, JM ;
LIN, D ;
MERCER, WE ;
KINZLER, KW ;
VOGELSTEIN, B .
CELL, 1993, 75 (04) :817-825