Effects of creatine treatment on survival and differentiation of GABA-ergic neurons in cultured striatal tissue

被引:43
作者
Andres, RH
Ducray, AD
Huber, AW
Pérez-Bouza, A
Krebs, SH
Schlattner, U
Seiler, RW
Wallimann, T
Widmer, HR [1 ]
机构
[1] Univ Hosp Bern, Dept Neurosurg, CH-3010 Bern, Switzerland
[2] ETH, Inst Cell Biol, CH-8093 Zurich, Switzerland
关键词
creatine; creatine kinase; differentiation; GABA; ganglionic eminence; neuroprotection;
D O I
10.1111/j.1471-4159.2005.03337.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, characterized by a prominent loss of GABA-ergic medium-sized spiny neurons in the caudate putamen. There is evidence that impaired energy metabolism contributes to neuronal death in HD. Creatine is an endogenous substrate for creatine kinases and thereby supports cellular ATP levels. This study investigated the effects of creatine supplementation (5 mm) on cell survival and neuronal differentiation in striatal cultures. Chronic creatine treatment resulted in significant increased densities of GABA-immunoreactive (-ir) neurons, although total neuronal cell number and general viability were not affected. Similar effects were seen after short-term treatment, suggesting that creatine acted as a differentiation factor. Inhibitors of transcription or translation did not abolish the creatine-mediated effects, nor did omission of extracellular calcium, whereas inhibition of mitogen-activated protein kinase and phosphatidylinositol-3-kinase significantly attenuated the creatine induced increase in GABA-ir cell densities. Creatine exhibited significant neuroprotection against toxicity instigated either by glucose- and serum deprivation or addition of 3-nitropropionic acid. In sum, the neuroprotective properties in combination with promotion of neuronal differentiation suggest that creatine has potential as a therapeutic drug in the treatment of neurodegenerative diseases, like HD.
引用
收藏
页码:33 / 45
页数:13
相关论文
共 70 条
[1]   CAG EXPANSION AFFECTS THE EXPRESSION OF MUTANT HUNTINGTIN IN THE HUNTINGTONS-DISEASE BRAIN [J].
ARONIN, N ;
CHASE, K ;
YOUNG, C ;
SAPP, E ;
SCHWARZ, C ;
MATTA, N ;
KORNREICH, R ;
LANDWEHRMEYER, B ;
BIRD, E ;
BEAL, MF ;
VONSATTEL, JP ;
SMITH, T ;
CARRAWAY, R ;
BOYCE, FM ;
YOUNG, AB ;
PENNEY, JB ;
DIFIGLIA, M .
NEURON, 1995, 15 (05) :1193-1201
[2]   Motor and cognitive improvements in patients with Huntington's disease after neural transplantation [J].
Bachoud-Lévi, A ;
Rémy, P ;
Nguyen, JP ;
Brugières, P ;
Lefaucheur, JP ;
Bourdet, C ;
Baudic, S ;
Gaura, V ;
Maison, P ;
Haddad, B ;
Boissé, MF ;
Grandmougin, T ;
Jény, R ;
Bartolomeo, P ;
Dalla Barba, G ;
Degos, JD ;
Lisovoski, F ;
Ergis, AM ;
Pailhous, E ;
Cesaro, P ;
Hantraye, P ;
Peschanski, M .
LANCET, 2000, 356 (9246) :1975-1979
[3]   Safety and tolerability assessment of intrastriatal neural allografts in five patients with Huntington's disease [J].
Bachoud-Lévi, AC ;
Bourdet, C ;
Brugières, P ;
Nguyen, JP ;
Grandmougin, T ;
Haddad, B ;
Jény, R ;
Bartolomeo, P ;
Boissé, MF ;
Dalla Barba, G ;
Degos, JD ;
Ergis, AM ;
Lefaucheur, JP ;
Lisovoski, F ;
Pailhous, E ;
Rémy, P ;
Palfi, S ;
Defer, GL ;
Cesaro, P ;
Hantraye, P ;
Peschanski, M .
EXPERIMENTAL NEUROLOGY, 2000, 161 (01) :194-202
[4]  
BEAL MF, 1993, J NEUROSCI, V13, P4181
[5]   TRANSPORT OF ENERGY IN MUSCLE - THE PHOSPHORYLCREATINE SHUTTLE [J].
BESSMAN, SP ;
GEIGER, PJ .
SCIENCE, 1981, 211 (4481) :448-452
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   Protective effect of the energy precursor creatine against toxicity of glutamate and β-amyloid in rat hippocampal neurons [J].
Brewer, GJ ;
Wallimann, TW .
JOURNAL OF NEUROCHEMISTRY, 2000, 74 (05) :1968-1978
[8]   Effects of chronic MPTP and 3-nitropropionic acid in nonhuman primates [J].
Brouillet, E ;
Hantraye, P .
CURRENT OPINION IN NEUROLOGY, 1995, 8 (06) :469-473
[9]   On the mechanisms of neuroprotection by creatine and phosphocreatine [J].
Brustovetsky, N ;
Brustovetsky, T ;
Dubinsky, JM .
JOURNAL OF NEUROCHEMISTRY, 2001, 76 (02) :425-434
[10]   Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine [J].
Calabresi, P ;
Gubellini, P ;
Picconi, B ;
Centonze, D ;
Pisani, A ;
Bonsi, P ;
Greengard, P ;
Hipskind, RA ;
Borrelli, E ;
Bernardi, G .
JOURNAL OF NEUROSCIENCE, 2001, 21 (14) :5110-5120