Evidence that phosphorylation of the microtubule-associated protein Tau by SAPK4/p38δ at Thr50 promotes microtubule assembly

被引:101
作者
Feijoo, C
Campbell, DG
Jakes, R
Goedert, M
Cuenda, A [1 ]
机构
[1] Univ Dundee, Sch Life Sci, MRC, Prot Phosphorylat Unit, Dundee DD1 5EH, Scotland
[2] MRC, Mol Biol Lab, Cambridge CB2 2QH, England
关键词
Tau protein; phosphorylation; p38; MAPK; osmotic shock; tauopathy;
D O I
10.1242/jcs.01655
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Phosphorylation regulates both normal and pathological Tau functioning. This microtubule-associated protein plays a role in the organization and integrity of the neuronal cytoskeleton under normal conditions and becomes hyperphosphorylated and aggregated in a number of neurodegenerative diseases referred to as tauopathies. In this study, we identify and compare the residues in human Tau phosphorylated in vitro by all four p38 MAPK isoforms, and study the regulation of the phosphorylation of Thr50, under conditions where p38 MAPKs are active in cells. Through biochemical analysis, loss of function studies and analysis of endogenous and overexpressed Tau proteins, we show that SAPK4/p38delta is the major kinase phosphorylating Thr50 in Tau, when cells are exposed to osmotic stress. We also show that mutation of Thr50 to glutamic acid, which mimics phosphorylation, increases the ability of Tau to promote tubulin polymerisation in vitro and in vivo. Moreover, we show that Thr50 is phosphorylated in filamentous Tau from Alzheimer's disease brain. These findings suggest a role for Tau in the adaptative response of neurons to stress and indicate that SAPK4/p38delta and/or SAPK3/p38gamma may contribute to the hyperphosphorylation of Tau in the human tauopathies.
引用
收藏
页码:397 / 408
页数:12
相关论文
共 64 条
[1]   Activation of the JNK/p38 pathway occurs in diseases characterized by tau protein pathology and is related to tau phosphorylation but not to apoptosis [J].
Atzori, C ;
Ghetti, B ;
Piva, R ;
Srinivasan, AN ;
Zolo, P ;
Delisle, MB ;
Mirra, SS ;
Migheli, A .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2001, 60 (12) :1190-1197
[2]   The specificities of protein kinase inhibitors: an update [J].
Bain, J ;
McLauchlan, H ;
Elliott, M ;
Cohen, P .
BIOCHEMICAL JOURNAL, 2003, 371 :199-204
[3]   PHOSPHORYLATION OF SER(262) STRONGLY REDUCES BINDING OF TAU-PROTEIN TO MICROTUBULES - DISTINCTION BETWEEN PHF-LIKE IMMUNOREACTIVITY AND MICROTUBULE-BINDING [J].
BIERNAT, J ;
GUSTKE, N ;
DREWES, G ;
MANDELKOW, EM ;
MANDELKOW, E .
NEURON, 1993, 11 (01) :153-163
[4]   ABNORMAL TAU-PHOSPHORYLATION AT SER(396) IN ALZHEIMERS-DISEASE RECAPITULATES DEVELOPMENT AND CONTRIBUTES TO REDUCED MICROTUBULE-BINDING [J].
BRAMBLETT, GT ;
GOEDERT, M ;
JAKES, R ;
MERRICK, SE ;
TROJANOWSKI, JQ ;
LEE, VMY .
NEURON, 1993, 10 (06) :1089-1099
[5]   INTERACTION OF TAU WITH THE NEURAL PLASMA-MEMBRANE MEDIATED BY TAU AMINO-TERMINAL PROJECTION DOMAIN [J].
BRANDT, R ;
LEGER, J ;
LEE, G .
JOURNAL OF CELL BIOLOGY, 1995, 131 (05) :1327-1340
[6]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[7]   Tau protein isoforms, phosphorylation and role in neurodegenerative disorders [J].
Buée, L ;
Bussière, T ;
Buée-Scherrer, V ;
Delacourte, A ;
Hof, PR .
BRAIN RESEARCH REVIEWS, 2000, 33 (01) :95-130
[8]   Phosphorylation of micro tubule-associated protein tau by stress-activated protein kinases in intact cells [J].
Buée-Scherrer, V ;
Goedert, M .
FEBS LETTERS, 2002, 515 (1-3) :151-154
[9]  
Campbell David G, 2002, J Biomol Tech, V13, P119
[10]   Microtubule reduction in Alzheimer's disease and aging is independent of τ filament formation [J].
Cash, AD ;
Aliev, G ;
Siedlak, SL ;
Nunomura, A ;
Fujioka, H ;
Zhu, XW ;
Raina, AK ;
Vinters, HV ;
Tabaton, M ;
Johnson, AB ;
Paula-Barbosa, M ;
Avila, J ;
Jones, PK ;
Castellani, RJ ;
Smith, MA ;
Perry, G .
AMERICAN JOURNAL OF PATHOLOGY, 2003, 162 (05) :1623-1627