A trafficking pathway for Anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions

被引:182
作者
Poustka, Frantisek [1 ]
Irani, Niloufer G. [1 ]
Feller, Antje [1 ]
Lu, Yuhua [1 ]
Pourcel, Lucille [1 ]
Frame, Kenneth [1 ]
Grotewold, Erich [1 ]
机构
[1] Ohio State Univ, Ctr Plant Biotechnol, Dept Plant Cellular & Mol Biol, Columbus, OH 43210 USA
关键词
D O I
10.1104/pp.107.105064
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants produce a very large number of specialized compounds that must be transported from their site of synthesis to the sites of storage or disposal. Anthocyanin accumulation has provided a powerful system to elucidate the molecular and cellular mechanisms associated with the intracellular trafficking of phytochemicals. Benefiting from the unique fluorescent properties of anthocyanins, we show here that in Arabidopsis ( Arabidopsis thaliana), one route for anthocyanin transport to the vacuole involves vesicle-like structures shared with components of the secretory pathway. By colocalizing the red fluorescence of the anthocyanins with green fluorescent protein markers of the endomembrane system in Arabidopsis seedlings, we show that anthocyanins are also sequestered to the endoplasmic reticulum and to endoplasmic reticulum-derived vesicle-like structures targeted directly to the protein storage vacuole in a Golgi-independent manner. Moreover, our results indicate that vacuolar accumulation of anthocyanins does not depend solely on glutathione S-transferase activity or ATP-dependent transport mechanisms. Indeed, we observed a dramatic increase of anthocyanin-filled subvacuolar structures, without a significant effect on total anthocyanin levels, when we inhibited glutathione S-transferase activity, or the ATP-dependent transporters with vanadate, a general ATPase inhibitor. Taken together, these results provide evidence for an alternative novel mechanism of vesicular transport and vacuolar sequestration of anthocyanins in Arabidopsis.
引用
收藏
页码:1323 / 1335
页数:13
相关论文
共 65 条
[1]   Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases [J].
Alfenito, MR ;
Souer, E ;
Goodman, CD ;
Buell, R ;
Mol, J ;
Koes, R ;
Walbot, V .
PLANT CELL, 1998, 10 (07) :1135-1149
[2]   Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J].
Borevitz, JO ;
Xia, YJ ;
Blount, J ;
Dixon, RA ;
Lamb, C .
PLANT CELL, 2000, 12 (12) :2383-2393
[3]   Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P [J].
Bruce, W ;
Folkerts, O ;
Garnaat, C ;
Crasta, O ;
Roth, B ;
Bowen, B .
PLANT CELL, 2000, 12 (01) :65-79
[4]   The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light [J].
Buer, CS ;
Muday, GK .
PLANT CELL, 2004, 16 (05) :1191-1205
[5]   Membrane trafficking in plants: new discoveries and approaches [J].
Carter, CJ ;
Bednarek, SY ;
Raikhel, NV .
CURRENT OPINION IN PLANT BIOLOGY, 2004, 7 (06) :701-707
[6]   GREEN FLUORESCENT PROTEIN AS A MARKER FOR GENE-EXPRESSION [J].
CHALFIE, M ;
TU, Y ;
EUSKIRCHEN, G ;
WARD, WW ;
PRASHER, DC .
SCIENCE, 1994, 263 (5148) :802-805
[7]   Anthocyanic vacuolar inclusions (AVIs) selectively bind acylated anthocyanins in Vitis vinifera L. (grapevine) suspension culture [J].
Conn, S ;
Zhang, W ;
Franco, C .
BIOTECHNOLOGY LETTERS, 2003, 25 (11) :835-839
[8]   The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium [J].
Debeaujon, I ;
Peeters, AJM ;
Léon-Kloosterziel, KM ;
Koornneef, M .
PLANT CELL, 2001, 13 (04) :853-871
[9]   Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway [J].
Di Sansebastiano, GP ;
Paris, N ;
Marc-Martin, S ;
Neuhaus, JM .
PLANT JOURNAL, 1998, 15 (04) :449-457
[10]   Regeneration of a lytic central vacuole and of neutral peripheral vacuoles can be visualized by green fluorescent proteins targeted to either type of vacuoles [J].
Di Sansebastiano, GP ;
Paris, N ;
Marc-Martin, S ;
Neuhaus, JM .
PLANT PHYSIOLOGY, 2001, 126 (01) :78-86