Centrin/Cdc31 is a novel regulator of protein degradation

被引:26
作者
Chen, Li [1 ]
Madura, Kiran [1 ]
机构
[1] Robert Wood Johnson Med Sch, Dept Biochem, Piscataway, NJ 08854 USA
关键词
D O I
10.1128/MCB.01256-07
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rad23 is required for efficient protein degradation and performs an important role in nucleotide excision repair. Saccharomyces cerevisiae Rad23, and its human counterpart (hHR23), are present in a complex containing the DNA repair factor Rad4 (termed XPC, for xeroderma pigmentosum group C, in humans). XPC/ hHR23 was also reported to bind centrin-2, a member of the superfamily of calcium-binding EF-hand proteins. We report here that yeast centrin, which is encoded by CDC31, is similarly present in a complex with Rad4/Rad23 (called NEF2). The interaction between Cdc31 and Rad23/Rad4 varied by growth phase and reflected oscillations in Cdc31 levels. Strikingly, a cdc31 mutant that formed a weaker interaction with Rad4 showed sensitivity to UV light. Based on the dual function of Rad23, in both DNA repair and protein degradation, we questioned if Cdc31 also participated in protein degradation. We report here that Cdc31 binds the proteasome and multiubiquitinated proteins through its carboxy-terminal EF-hand motifs. Moreover, cdc31 mutants were highly sensitive to drugs that cause protein damage, failed to efficiently degrade proteolytic substrates, and formed altered interactions with the proteasome. These findings reveal for the first time a new role for centrin/Cdc31 in protein degradation.
引用
收藏
页码:1829 / 1840
页数:12
相关论文
共 49 条
[1]   Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair [J].
Araki, M ;
Masutani, C ;
Takemura, M ;
Uchida, A ;
Sugasawa, K ;
Kondoh, J ;
Ohkuma, Y ;
Hanaoka, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (22) :18665-18672
[2]   INVIVO HALF-LIFE OF A PROTEIN IS A FUNCTION OF ITS AMINO-TERMINAL RESIDUE [J].
BACHMAIR, A ;
FINLEY, D ;
VARSHAVSKY, A .
SCIENCE, 1986, 234 (4773) :179-186
[3]   YEAST GENE REQUIRED FOR SPINDLE POLE BODY DUPLICATION - HOMOLOGY OF ITS PRODUCT WITH CA-2+-BINDING PROTEINS [J].
BAUM, P ;
FURLONG, C ;
BYERS, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (15) :5512-5516
[4]   MOLECULAR-CLONING AND EVOLUTIONARY ANALYSIS OF THE CALCIUM-MODULATED CONTRACTILE PROTEIN, CENTRIN, IN GREEN-ALGAE AND LAND PLANTS [J].
BHATTACHARYA, D ;
STEINKOTTER, J ;
MELKONIAN, M .
PLANT MOLECULAR BIOLOGY, 1993, 23 (06) :1243-1254
[5]   Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center [J].
Biggins, S ;
Ivanovska, I ;
Rose, MD .
JOURNAL OF CELL BIOLOGY, 1996, 133 (06) :1331-1346
[6]   DIRECT INTERACTION BETWEEN YEAST SPINDLE POLE BODY COMPONENTS - KAR1P IS REQUIRED FOR CDC31P LOCALIZATION TO THE SPINDLE POLE BODY [J].
BIGGINS, S ;
ROSE, MD .
JOURNAL OF CELL BIOLOGY, 1994, 125 (04) :843-852
[7]   Crystallization and preliminary X-ray diffraction data of the complex between human centrin 2 and a peptide from the protein XPC [J].
Charbonnier, Jean-Baptiste ;
Christova, Petya ;
Shosheva, Alexandra ;
Stura, Enrico ;
Le Du, Marie Helene ;
Blouquit, Yves ;
Duchambon, Patricia ;
Miron, Simona ;
Craescu, Constantin T. .
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2006, 62 :649-651
[8]   Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly [J].
Chen, L ;
Shinde, U ;
Ortolan, TG ;
Madura, K .
EMBO REPORTS, 2001, 2 (10) :933-938
[9]   Rad23 promotes the targeting of proteolytic substrates to the proteasome [J].
Chen, L ;
Madura, K .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (13) :4902-4913
[10]   Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A [J].
Chuang, SM ;
Chen, L ;
Lambertson, D ;
Anand, M ;
Kinzy, TG ;
Madura, M .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (01) :403-413