Solution-Processed Organic Solar Cells with Power Conversion Efficiencies of 2.5% using Benzothiadiazole/Imide-Based Acceptors

被引:227
作者
Bloking, Jason T. [1 ]
Han, Xu [1 ]
Higgs, Andrew T. [1 ]
Kastrop, John P. [1 ]
Pandey, Laxman [2 ]
Norton, Joseph E. [2 ]
Risko, Chad [2 ]
Chen, Cynthia E. [1 ]
Bredas, Jean-Luc [2 ]
McGehee, Michael D. [1 ]
Sellinger, Alan [1 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, CAMP, Stanford, CA 94305 USA
[2] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
关键词
organic electronics; solar cells; photovoltaic devices; electron acceptors; n-type materials; POLYMER; 2-VINYL-4,5-DICYANOIMIDAZOLES; PHOTOVOLTAICS;
D O I
10.1021/cm203111k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new series of electron-deficient molecules based on a central benzothiadiazole moiety flanked with vinylimides has been synthesized via Heck chemistry and used in solution-processed organic photovoltaics (OPV). Two new compounds, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (PI-BT) and 4,7-bis(4-(N-hexylnaphthalimide)vinyl)benzo[c]1,2,5-thiadiazole (NI-BT), show significantly different behaviors in bulk heterojunction (BHJ) solar cells using poly(3-hexylthiophene) (P3HT) as the electron donor. Two-dimensional grazing incidence X-ray scattering (2D GIXS) experiments demonstrate that PI-BT shows significant crystallization in spin-coated thin films, whereas 02 NI-BT does not. Density functional theory (DFT) calculations predict that while PI-BT maintains a planar structure in the ground state, steric interactions cause a twist in the NI-BT (.) E molecule, likely preventing significant crystallization. In BHJ solar cells with P3HT as donor, PI-BT devices achieved a large open-circuit voltage of 0.96 V and a maximum device power-conversion efficiency of 2.54%, whereas NI-BT containing devices only achieved 0.1% power-conversion efficiency.
引用
收藏
页码:5484 / 5490
页数:7
相关论文
共 45 条
[1]   Material and Energy Intensity of Fullerene Production [J].
Anctil, Annick ;
Babbitt, Callie W. ;
Raffaelle, Ryne P. ;
Landi, Brian J. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (06) :2353-2359
[2]   High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives [J].
Backer, Scott A. ;
Sivula, Kevin ;
Kavulak, David F. ;
Frechet, Jean M. J. .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :2927-2929
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]   Polymer-Fullerene Bulk-Heterojunction Solar Cells [J].
Brabec, Christoph J. ;
Gowrisanker, Srinivas ;
Halls, Jonathan J. M. ;
Laird, Darin ;
Jia, Shijun ;
Williams, Shawn P. .
ADVANCED MATERIALS, 2010, 22 (34) :3839-3856
[5]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
[6]  
2-A
[7]   Strain and Huckel Aromaticity: Driving Forces for a Promising New Generation of Electron Acceptors in Organic Electronics [J].
Brunetti, F. G. ;
Gong, X. ;
Tong, M. ;
Heeger, A. J. ;
Wudl, Fred .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (03) :532-536
[8]   Organic electronics from perylene to organic photovoltaics: painting a brief history with a broad brush [J].
Brunetti, Fulvio G. ;
Kumar, Rajeev ;
Wudl, Fred .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (15) :2934-2948
[9]   Polymer solar cells with enhanced open-circuit voltage and efficiency [J].
Chen, Hsiang-Yu ;
Hou, Jianhui ;
Zhang, Shaoqing ;
Liang, Yongye ;
Yang, Guanwen ;
Yang, Yang ;
Yu, Luping ;
Wu, Yue ;
Li, Gang .
NATURE PHOTONICS, 2009, 3 (11) :649-653
[10]   A hybrid polymer of polyaniline and phthalimide dyes [J].
Dierschke, F ;
Jacob, J ;
Müllen, K .
SYNTHETIC METALS, 2006, 156 (5-6) :433-443