Fixed point iteration for pseudocontractive maps

被引:68
作者
Chidume, CE [1 ]
Moore, C [1 ]
机构
[1] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy
关键词
D O I
10.1090/S0002-9939-99-05050-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a compact convex subset of a real Hilbert space, H; T : K --> K a continuous pseudocontractive map. Let {a(n)}, {b(n)}, {c(n)}, {a'(n)}, {b'(n)} and{c'(n)} be real sequences in [0,1] satisfying appropriate conditions. For arbitrary x(1) is an element of K; define the sequence {x(n)}(n=1)(infinity) iteratively by x(n+1) = a(n)x(n) + b(n)Ty(n) + c(n)u(n); y(n) = a'(n)x(n) + b'(n)Tx(n) + c'(n)v(n); n greater than or equal to 1; where {u(n)}, {v(n)} are arbitrary sequences in K. Then, {x(n)}(n=1)(infinity) converges strongly to a fixed point of T. A related result deals with the convergence of {x(n)}(n=1)(infinity) to a fixed point of T when T is Lipschitz and pseudocontractive. Our theorems also hold for the slightly more general class of continuous hemicontractive nonlinear maps.
引用
收藏
页码:1163 / 1170
页数:8
相关论文
共 32 条
[1]  
[Anonymous], 1976, P S PURE MATH 2
[2]   CONSTRUCTION OF FIXED POINTS OF NONLINEAR MAPPINGS IN HILBERT SPACE [J].
BROWDER, FE ;
PETRYSHY.WV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 20 (02) :197-&
[3]   Nonlinear accretive and pseudo-contractive operator equations in Banach spaces [J].
Chidume, CE ;
Osilike, MO .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (07) :779-789
[4]   ISHIKAWA ITERATION PROCESS FOR NONLINEAR LIPSCHITZ STRONGLY ACCRETIVE MAPPINGS [J].
CHIDUME, CE ;
OSILIKE, MO .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 192 (03) :727-741
[5]   APPROXIMATION OF FIXED-POINTS OF STRONGLY PSEUDOCONTRACTIVE MAPPINGS [J].
CHIDUME, CE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (02) :545-551
[7]   The solution by iteration of nonlinear equations in uniformly smooth Banach spaces [J].
Chidume, CE ;
Moore, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 215 (01) :132-146
[8]   Iterative solutions of nonlinear equations of the strongly accretive type [J].
Chidume, CE .
MATHEMATISCHE NACHRICHTEN, 1998, 189 :49-60
[9]  
CHIDUME CE, 1998, IN PRESS P AM MATH S
[10]   RANGE OF ACCRETIVE OPERATORS [J].
CRANDALL, MG ;
PAZY, A .
ISRAEL JOURNAL OF MATHEMATICS, 1977, 27 (3-4) :235-246