Direct NMR detection of alkali metal ions bound to G-quadruplex DNA

被引:91
作者
Ida, Ramsey [1 ]
Wu, Gang [1 ]
机构
[1] Queens Univ, Dept Chem, Kingston, ON K7L 3N6, Canada
关键词
D O I
10.1021/ja709975z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We describe a general multinuclear (H-1, Na-23, Rb-87) NMR approach for direct detection of alkali metal ions bound to G-quadruplex DNA. This study is motivated by our recent discovery that alkali metal ions (Na+, K+, Rb+) tightly bound to G-quadruplex DNA are actually "NMR visible" in solution (Wong, A.; Ida, R.; Wu, G. Biochem. Biophys. Res. Commun. 2005, 337, 363). Here solution and solid-state NMR methods are developed for studying ion binding to the classic G-quadruplex structures formed by three DNA oligomers: d(TG(4)T), d(G(4)T(3)G(4)), and d(G(4)T(4)G(4)). The present study yields the following major findings. (1) Alkali metal ions tightly bound to G-quadruplex DNA can be directly observed by NMR in solution. (2) Competitive ion binding to the G-quadruplex channel site can be directly monitored by simultaneous NMR detection of the two competing ions. (3) Na+ ions are found to locate in the diagonal T-4 loop region of the G-quadruplex formed by two strands of d(G4T4G4). This is the first time that direct NMR evidence has been found for alkali metal ion binding to the diagonal T4 loop in solution. We propose that the loop Na+ ion is located above the terminal G-quartet, coordinating to four guanine 06 atoms from the terminal G-quartet and one 02 atom from a loop thymine base and one water molecule. This Na+ ion coordination is supported by quantum chemical calculations on 23Na chemical shifts. Variable-temperature 23Na NMR results have revealed that the channel and loop Na+ ions in d(G(4)T(4)G(4)) exhibit very different ion mobilities. The loop Na+ ions have a residence lifetime of 220 mu s at 15 degrees C, whereas the residence lifetime of Na+ ions residing inside the G-quadruplex channel is 2 orders of magnitude longer. (4) We have found direct 23Na NMR evidence that mixed K+ and Na+ ions occupy the d(G4T4G4) G-quadruplex channel when both Na+ and K+ ions are present in solution. (5) The high spectral resolution observed in this study is unprecedented in solution 23Na NMR studies of biological macromolecules. Our results strongly suggest that multinuclear NMR is a viable technique for studying ion binding to G-quadruplex DNA.
引用
收藏
页码:3590 / 3602
页数:13
相关论文
共 80 条
[1]   NMR-STUDY OF PARALLEL-STRANDED TETRAPLEX FORMATION BY THE HEXADEOXYNUCLEOTIDE D(TG4T) [J].
ABOULELA, F ;
MURCHIE, AIH ;
LILLEY, DMJ .
NATURE, 1992, 360 (6401) :280-282
[2]   SOLUTION STRUCTURE OF A PARALLEL-STRANDED TETRAPLEX FORMED BY D(TG(4)T) IN THE PRESENCE OF SODIUM-IONS BY NUCLEAR-MAGNETIC-RESONANCE SPECTROSCOPY [J].
ABOULELA, F ;
MURCHIE, AIH ;
NORMAN, DG ;
LILLEY, DMJ .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 243 (03) :458-471
[3]  
Balasubramanian S, 2006, RSC BIOMOL SCI, pV
[4]   Direct detection of monovalent metal ion binding to a DNA G-quartet by 205Tl NMR [J].
Basu, S ;
Szewczak, AA ;
Cocco, M ;
Strobel, SA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (13) :3240-3241
[5]   H-1, NA-23, AND P-31 NMR-STUDIES OF THE SELF-ASSEMBLY OF THE 5'-GUANOSINE MONOPHOSPHATE DIANION IN NEUTRAL AQUEOUS-SOLUTION IN THE PRESENCE OF SODIUM-CATIONS [J].
BORZO, M ;
DETELLIER, C ;
LASZLO, P ;
PARIS, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1980, 102 (03) :1124-1134
[6]   Solid-state 23Na NMR study of sodium lariat ether receptors exhibiting cation-π interactions [J].
Bryce, David L. ;
Adiga, Samyuktha ;
Elliott, Elizabeth K. ;
Gokel, George W. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (50) :13568-13577
[7]   Quadruplex DNA: sequence, topology and structure [J].
Burge, Sarah ;
Parkinson, Gary N. ;
Hazel, Pascale ;
Todd, Alan K. ;
Neidle, Stephen .
NUCLEIC ACIDS RESEARCH, 2006, 34 (19) :5402-5415
[8]   A thymine tetrad in d(TGGGGT) quadruplexes stabilized with Tl+/Na+ ions [J].
Cáceres, C ;
Wright, G ;
Gouyette, C ;
Parkinson, G ;
Subirana, JA .
NUCLEIC ACIDS RESEARCH, 2004, 32 (03) :1097-1102
[9]   Structure of the first parallel DNA quadruplex-drug complex [J].
Clark, GR ;
Pytel, PD ;
Squire, CJ ;
Neidle, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (14) :4066-4067
[10]   The solution structure of d(G4T4G3)2:: a bimolecular G-quadruplex with a novel fold [J].
Crnugelj, M ;
Hud, NV ;
Plavec, J .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 320 (05) :911-924