Prediction of Transition-State Energies of Hydrodeoxygenation Reactions on Transition-Metal Surfaces Based on Machine Learning

被引:24
作者
Abdelfatah, Kareem [1 ]
Yang, Wenqiang [2 ]
Solomon, Rajadurai Vijay [2 ]
Rajbanshi, Biplab [2 ]
Chowdhury, Asif [1 ]
Zare, Mehdi [2 ]
Kundu, Subrata Kumar [2 ]
Yonge, Adam C. [2 ]
Heyden, Andreas [2 ]
Terejanu, Gabriel [3 ]
机构
[1] Univ South Carolina, Dept Comp Sci & Engn, Columbia, SC 29208 USA
[2] Univ South Carolina, Dept Chem Engn, Columbia, SC 29208 USA
[3] Univ North Carolina Charolotte, Dept Comp Sci, Charlotte, NC 28262 USA
基金
美国国家科学基金会;
关键词
BRONSTED-EVANS-POLANYI; DENSITY-FUNCTIONAL THEORY; FINDING SADDLE-POINTS; PROPANOIC ACID; SCALING RELATIONS; DECARBOXYLATION; DECARBONYLATION; ACCURATE; PD(111); DECOMPOSITION;
D O I
10.1021/acs.jpcc.9b10507
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Computational catalyst discovery involves identification of a meaningful model and suitable descriptors that determine the catalyst properties. We study the impact of combining various descriptors (e.g., reaction energies, metal descriptors, and bond counts) for modeling transition-state energies (TS) based on a database of adsorption and TS energies across transition-metal surfaces for the decarboxylation and decarbonylation of propionic acid, a chemistry characteristic for biomass conversion. Results of different machine learning models for more than 1572 descriptor combinations suggest that there is no statistically significant difference between linear and nonlinear models when using the right combination of reactant energies, metal descriptors, and bond counts. However, linear models are inferior when not including bond count and metal descriptors. Furthermore, when there are missing data for reaction steps on all metals, conventional linear scaling is inferior to linear and nonlinear models with proper choice of descriptors that are surprisingly robust.
引用
收藏
页码:29804 / 29810
页数:7
相关论文
共 45 条
[1]   Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J].
Abild-Pedersen, F. ;
Greeley, J. ;
Studt, F. ;
Rossmeisl, J. ;
Munter, T. R. ;
Moses, P. G. ;
Skulason, E. ;
Bligaard, T. ;
Norskov, J. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[2]  
[Anonymous], 2012, MACHINE LEARNING PRO
[3]   Effect of Palladium Surface Structure on the Hydrodeoxygenation of Propanoic Acid: Identification of Active Sites [J].
Behtash, Sina ;
Lu, Jianmin ;
Williams, Christopher T. ;
Monnier, John R. ;
Heyden, Andreas .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (04) :1928-1942
[4]   Acid and basic catalysis [J].
Bronsted, JN .
CHEMICAL REVIEWS, 1928, 5 (03) :231-338
[5]  
Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
[6]   Prediction of Adsorption Energies for Chemical Species on Metal Catalyst Surfaces Using Machine Learning [J].
Chowdhury, Asif J. ;
Yang, Wenqiang ;
Walker, Eric ;
Mamun, Osman ;
Heyden, Andreas ;
Terejanu, Gabriel A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (49) :28142-28150
[7]   Development and Assessment of a Criterion for the Application of Bronsted-Evans-Polanyi Relations for Dissociation Catalytic Reactions at Surfaces [J].
Ding, Zhao-Bin ;
Maestri, Matteo .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (23) :9864-9874
[8]   Effect of the Exchange-Correlation Potential on the Transferability of Bronsted-Evans-Polanyi Relationships in Heterogeneous Catalysis [J].
Fajin, Jose L. C. ;
Vines, Francesc ;
Cordeiro, M. Natalia D. S. ;
Illas, Francesc ;
Gomes, Jose R. B. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (05) :2121-2126
[9]   Methanol dissociation on bimetallic surfaces: validity of the general Bronsted-Evans-Polanyi relationship for O-H bond cleavage [J].
Fajin, Jose L. C. ;
Cordeiro, M. Natalia D. S. ;
Gomes, Jose R. B. .
RSC ADVANCES, 2016, 6 (22) :18695-18702
[10]   Modeling Ethanol Decomposition on Transition Metals: A Combined Application of Scaling and Bronsted-Evans-Polanyi Relations [J].
Ferrin, P. ;
Simonetti, D. ;
Kandoi, S. ;
Kunkes, E. ;
Dumesic, J. A. ;
Norskov, J. K. ;
Mavrikakis, M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (16) :5809-5815