Fragmentation of a drop as it falls in a lighter miscible fluid

被引:18
作者
Arecchi, FT
BuahBassuah, PK
Francini, F
Residori, S
机构
[1] UNIV FLORENCE,DEPT PHYS,FLORENCE,ITALY
[2] UNIV CAPE COAST,CAPE COAST,GHANA
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 01期
关键词
D O I
10.1103/PhysRevE.54.424
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report an experimental investigation of the fragmentation process of a heavy drop falling in a lighter miscible fluid. For fixed liquid composition and for different drop sizes, we observe that the fragmentation cascade stops after a few breakups, once each individual droplet has reduced below a critical volume for further splitting. Since each fragmentation is the outcome of a hydrodynamic instability, we expect fluctuations in the size of the fragmented droplets. The main experimental outcomes are the following: (1) the first breakup time scales with the size separation from the critical volume in a universal way independent of the fluid composition; (2) in the region intermediate between the first and the last fragmentation, the droplet sizes display multifractal properties, with the average dimension D-0 decreasing to a minimum and then increasing again once diffusion prevails; and (3) the droplet height scales with time with an exponent independent of the drop volume and composition.
引用
收藏
页码:424 / 429
页数:6
相关论文
共 11 条
[1]   AN EXPERIMENTAL INVESTIGATION OF THE BREAK-UP OF A LIQUID-DROP FALLING IN A MISCIBLE FLUID [J].
ARECCHI, FT ;
BUAHBASSUAH, PK ;
FRANCINI, F ;
PEREZGARCIA, C ;
QUERCIOLI, F .
EUROPHYSICS LETTERS, 1989, 9 (04) :333-338
[2]   FRAGMENT FORMATION IN THE BREAK-UP OF A DROP FALLING IN A MISCIBLE LIQUID [J].
ARECCHI, FT ;
BUAHBASSUAH, PK ;
PEREZGARCIA, C .
EUROPHYSICS LETTERS, 1991, 15 (04) :429-434
[3]  
Feder J., 1988, FRACTALS PLENUM
[4]   ON DETERMINING THE DIMENSION OF CHAOTIC FLOWS [J].
FROEHLING, H ;
CRUTCHFIELD, JP ;
FARMER, D ;
PACKARD, NH ;
SHAW, R .
PHYSICA D, 1981, 3 (03) :605-617
[5]   DIMENSIONS AND ENTROPIES OF STRANGE ATTRACTORS FROM A FLUCTUATING DYNAMICS APPROACH [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICA D, 1984, 13 (1-2) :34-54
[6]   GENERALIZATIONS OF THE HAUSDORFF DIMENSION OF FRACTAL MEASURES [J].
GRASSBERGER, P .
PHYSICS LETTERS A, 1985, 107 (03) :101-105
[7]  
PRASAD RR, 1988, PHYS REV LETT, V61, P76
[8]  
TENNEKEES H, 1972, 1 COURSE TURBULENCE
[9]  
Thompson DArcy W, 1961, GROWTH FORM
[10]  
THOMSON JJ, 1885, P R SOC LONDON, V39, P447