Long-term hydrologic effects on marsh plant community structure in the southern Everglades

被引:58
作者
Busch, DE [1 ]
Loftus, WF [1 ]
Bass, OL [1 ]
机构
[1] Natl Pk Serv, Everglades Natl Pk, FL USA
关键词
classification; Florida; hydroperiod; macrophyte; ordination; periphyton; Shark Slough; water depth;
D O I
10.1007/BF03161658
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Although large-scale transformation of Everglades landscapes has occurred during the past century, the patterns of association among hydrologic factors and southern Everglades freshwater marsh vegetation have not been well-defined. We used a 10-year data base on the aquatic biota of Shark Slough to classify vegetation and describe plant community change in intermediate- to long-hydroperiod Everglades marshes. Study area marsh vegetation was quantitatively grouped into associations dominated by 1) Cladium jamaicense, 2) a group of emergents including Eleocharis cellulosa, Sagittaria lancifolia, and Rhyncospora tracyi, 3) taxa associated with algal mats (Utricularia spp. and Bacopa caroliniana), and 4) the grasses Panicum hemitomon and Paspalidium geminatum. During the decade evaluated, the range of water depths that characterized our study sites approached both extremes depicted in the 40-year hydrologic record for the region. Water depths were near the long-term average during the mid-1980s, declined sharply during a late 1980s drought, and underwent a prolonged increase from 1991 through 1995. Overall macrophyte cover varied inversely with water depth, while the response of periphyton was more complex. An ordination analysis, based on plant species abundance, revealed that study area vegetation structure was associated with hydrologic patterns. Marsh plant community structure showed evidence of cyclic interannual variation corresponding to hydrologic change over the decade evaluated. Lower water depths, the occurrence of marl substrates, and high periphyton cover were correlated. These factors contributed to reduced macrophyte cover in portions of the study area from which water had been diverted.
引用
收藏
页码:230 / 241
页数:12
相关论文
共 29 条
[1]  
[Anonymous], 1979, DECORANA-A FORTRAN program for detrended correspondence analysis and reciprocal averaging
[2]  
Armentano T.V., 1995, J COASTAL RES, P111
[3]  
BROWDER JA, 1981, T643 US NAT PARK SER
[4]  
Browder Joan A., 1994, P379
[5]   RESPONSE OF EVERGLADES PLANT-COMMUNITIES TO NITROGEN AND PHOSPHORUS ADDITIONS [J].
CRAFT, CB ;
VYMAZAL, J ;
RICHARDSON, CJ .
WETLANDS, 1995, 15 (03) :258-271
[6]  
CRAIGHEAD FRANK C., 1962, QUART JOUR FLORIDA ACAD SCI, V25, P1
[7]   Changes in plant communities relative to hydrologic conditions in the Florida Everglades [J].
David, PG .
WETLANDS, 1996, 16 (01) :15-23
[8]  
Davis Steven M., 1994, P419
[9]  
Deangelis Donald L., 1994, P9
[10]  
Gunderson Lance H., 1994, P323