QCD in a finite box:: numerical test studies in the three Leutwyler-Smilga regimes

被引:5
作者
Dürr, S [1 ]
机构
[1] Paul Scherrer Inst, Theory Grp, CH-5232 Villigen, Switzerland
关键词
D O I
10.1016/S0550-3213(00)00658-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The Leutwyler-Smilga prediction regarding the (ir)relevance of the global topological charge for QCD in a finite box is subject to a test. To this end the lattice version of a suitably chosen analogue (massive 2-flavour Schwinger model) is analyzed in the small (V Sigmam much less than 1), intermediate (V Sigmam similar or equal to 1) and large (V Sigmam much greater than 1) Leutwyler-Smilga regimes. The predictions for the small and large regimes an confirmed and illustrated. New results about the role of the functional determinant in all three regimes and about the sensitivity of physical observables on the topological charge in the intermediate regime are presented, (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:420 / 438
页数:19
相关论文
共 32 条
[1]   Scanning the topological sectors of the QCD vacuum with the hybrid Monte Carlo algorithm [J].
Alles, B ;
Bali, C ;
D'Elia, M ;
Di Giacomo, A ;
Eicker, N ;
Schilling, K ;
Spitz, A ;
Gusken, S ;
Hoeber, H ;
Lippert, T ;
Struckmann, T ;
Ueberholz, P ;
Viehoff, J .
PHYSICAL REVIEW D, 1998, 58 (07)
[2]   Hybrid Monte Carlo and topological modes of full QCD [J].
Alles, B ;
Boyd, G ;
DElia, M ;
DiGiacomo, A ;
Vicari, E .
PHYSICS LETTERS B, 1996, 389 (01) :107-111
[3]  
ALLES B, 1996, P ICHEP 96 WARS, P1599
[4]   CHIRAL SYMMETRY-BREAKING IN CONFINING THEORIES [J].
BANKS, T ;
CASHER, A .
NUCLEAR PHYSICS B, 1980, 169 (1-2) :103-125
[5]   THERE ARE NO GOLDSTONE BOSONS IN 2 DIMENSIONS [J].
COLEMAN, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (04) :259-264
[6]   Topology and the Dirac operator spectrum in finite-volume gauge theories [J].
Damgaard, PH .
NUCLEAR PHYSICS B, 1999, 556 (1-2) :327-349
[7]  
DEFORCRAND P, HEPLAT0008005
[8]  
DESCOTES S, HEPPH9912234
[9]   Aspects of quasi-phase-structure of the Schwinger model on a cylinder with broken chiral symmetry [J].
Dürr, S .
ANNALS OF PHYSICS, 1999, 273 (01) :1-36
[10]   LATTICE QCD SOLUTION TO THE U(1) PROBLEM [J].
FUKUGITA, M ;
KURAMASHI, Y ;
OKAWA, M ;
UKAWA, A .
PHYSICAL REVIEW D, 1995, 51 (07) :3952-3954