Outliers robustness in multivariate orthogonal regression

被引:12
作者
Calafiore, GC [1 ]
机构
[1] Politecn Torino, Dipartimento Automat & Informat, I-10129 Turin, Italy
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS | 2000年 / 30卷 / 06期
关键词
computer vision; influential observations; orthogonal least squares; outliers; pattern recognition; regression analysis;
D O I
10.1109/3468.895890
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the problem of multivariate affine regression in the presence of outliers in the data. The method discussed is based on weighted orthogonal least squares. The weights associated with the data satisfy a suitable optimality criterion and are computed by a two-step algorithm requiring a RANSAC step and a gradient-based optimization step. Issues related to the breakdown point of the method are discussed, and examples of application on various real multidimensional data sets are reported in the paper.
引用
收藏
页码:674 / 679
页数:6
相关论文
共 18 条
[1]  
DONOHO DL, 1983, FESTSCHRIFT E LEHMAN
[2]  
Draper NR, 1966, APPL REGRESSION ANAL
[3]   RANDOM SAMPLE CONSENSUS - A PARADIGM FOR MODEL-FITTING WITH APPLICATIONS TO IMAGE-ANALYSIS AND AUTOMATED CARTOGRAPHY [J].
FISCHLER, MA ;
BOLLES, RC .
COMMUNICATIONS OF THE ACM, 1981, 24 (06) :381-395
[4]   AN ANALYSIS OF THE TOTAL LEAST-SQUARES PROBLEM [J].
GOLUB, GH ;
VANLOAN, CF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (06) :883-893
[5]  
Hampel F. R., 1986, ROBUST STAT APPROACH
[6]   LOCATION OF SEVERAL OUTLIERS IN MULTIPLE-REGRESSION DATA USING ELEMENTAL SETS [J].
HAWKINS, DM ;
BRADU, D ;
KASS, GV .
TECHNOMETRICS, 1984, 26 (03) :197-208
[7]  
Huber P. J., 1981, ROBUST STAT
[8]   EIGENVALUE AND EIGENVECTOR DERIVATIVES OF A NONDEFECTIVE MATRIX [J].
JUANG, JN ;
GHAEMMAGHAMI, P ;
LIM, KB .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1989, 12 (04) :480-486
[9]   A NONPARAMETRIC METHOD FOR FITTING A STRAIGHT-LINE TO A NOISY IMAGE [J].
KAMGARPARSI, B ;
KAMGARPARSI, B ;
NETANYAHU, NS .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (09) :998-1001
[10]  
LUENBERGER D, 1984, LINEAR NONLINEAR PRO, pCH10