Cross-Regulation between an Alternative Splicing Activator and a Transcription Repressor Controls Neurogenesis

被引:117
作者
Raj, Bushra [1 ,2 ]
O'Hanlon, Dave [1 ]
Vessey, John P. [3 ]
Pan, Qun [1 ]
Ray, Debashish [1 ]
Buckley, Noel J. [4 ,5 ]
Miller, Freda D. [2 ,3 ,6 ]
Blencowe, Benjamin J. [1 ,2 ]
机构
[1] Univ Toronto, Donnelly Ctr, Banting & Best Dept Med Res, Toronto, ON M5S 3E1, Canada
[2] Univ Toronto, Dept Mol Genet, Toronto, ON M5S 1A8, Canada
[3] Hosp Sick Children, Program Dev & Stem Cell Biol, Toronto, ON M5G 1L7, Canada
[4] Kings Coll London, Dept Neurosci, James Black Ctr, London SE5 9NU, England
[5] Kings Coll London, James Black Ctr, Ctr Cellular Basis Behav, Inst Psychiat, London SE5 9NU, England
[6] Univ Toronto, Dept Physiol, Toronto, ON M5S 1A8, Canada
基金
加拿大健康研究院;
关键词
IN-VIVO; GENE-EXPRESSION; TARGET GENES; STEM-CELLS; REST; NEURONS; PROTEIN; EMBRYOGENESIS; DROSOPHILA; NETWORKS;
D O I
10.1016/j.molcel.2011.08.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Neurogenesis requires the concerted action of numerous genes that are regulated at multiple levels. However, how different layers of gene regulation are coordinated to promote neurogenesis is not well understood. We show that the neural-specific Ser/Arg repeat-related protein of 100 kDa (nSR100/SRRM4) negatively regulates REST (NRSF), a transcriptional repressor of genes required for neurogenesis. nSR100 directly promotes alternative splicing of REST transcripts to produce a REST isofornn (REST4) with greatly reduced repressive activity, thereby activating expression of REST targets in neural cells. Conversely, REST directly represses nSR100 in non-neural cells to prevent the activation of neural-specific splicing events. Consistent with a critical role for nSR100 in the inhibition of REST activity, blocking nSR100 expression in the developing mouse brain impairs neurogenesis. Our results thus reveal a fundamental role for direct regulatory interactions between a splicing activator and transcription repressor in the control of the multilayered regulatory programs required for neurogenesis.
引用
收藏
页码:843 / 850
页数:8
相关论文
共 31 条
[1]   Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes [J].
Bruce, AW ;
Donaldson, IJ ;
Wood, IC ;
Yerbury, SA ;
Sadowski, MI ;
Chapman, M ;
Göttgens, B ;
Buckley, NJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (28) :10458-10463
[2]   Networking in a global world: Establishing functional connections between neural splicing regulators and their target transcripts [J].
Calarco, John A. ;
Zhen, Mei ;
Blencowe, Benjamin J. .
RNA, 2011, 17 (05) :775-791
[3]   Regulation of Vertebrate Nervous System Alternative Splicing and Development by an SR-Related Protein [J].
Calarco, John A. ;
Superina, Simone ;
O'Hanlon, Dave ;
Gabut, Mathieu ;
Raj, Bushra ;
Pan, Qun ;
Skalska, Ursula ;
Clarke, Laura ;
Gelinas, Danielle ;
van der Kooy, Derek ;
Zhen, Mei ;
Ciruna, Brian ;
Blencowe, Benjamin J. .
CELL, 2009, 138 (05) :898-910
[4]   NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis [J].
Chen, ZF ;
Paquette, AJ ;
Anderson, DJ .
NATURE GENETICS, 1998, 20 (02) :136-142
[5]   REST - A MAMMALIAN SILENCER PROTEIN THAT RESTRICTS SODIUM-CHANNEL GENE-EXPRESSION TO NEURONS [J].
CHONG, JHA ;
TAPIARAMIREZ, J ;
KIM, S ;
TOLEDOARAL, JJ ;
ZHENG, YC ;
BOUTROS, MC ;
ALTSHULLER, YM ;
FROHMAN, MA ;
KRANER, SD ;
MANDEL, G .
CELL, 1995, 80 (06) :949-957
[6]   fruitless splicing specifies male courtship behavior in Drosophila [J].
Demir, E ;
Dickson, BJ .
CELL, 2005, 121 (05) :785-794
[7]  
Forch P, 2003, Prog Mol Subcell Biol, V31, P127
[8]  
GABUT M, 2011, CELL IN PRESS
[9]   Lfc and Tctex-1 regulate the genesis of neurons from cortical precursor cells [J].
Gauthier-Fisher, Andree ;
Lin, Dan C. ;
Greeve, Melissa ;
Kaplan, David R. ;
Rottapel, Robert ;
Miller, Freda D. .
NATURE NEUROSCIENCE, 2009, 12 (06) :735-U4
[10]   Rest and the restless: in stem cells and beyond [J].
Gopalakrishnan, Vidya .
FUTURE NEUROLOGY, 2009, 4 (03) :317-329