Improved kernel principal component analysis for fault detection

被引:82
作者
Cui, Peiling [1 ,2 ]
Li, Junhong [3 ]
Wang, Guizeng [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Sch Instrumentat Sci & Opto Elect Engn, Beijing 100083, Peoples R China
[3] Aigo Res Inst Image Comp, Beijing 100089, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
kernel principal component analysis (KPCA); feature vector selection (FVS); Fisher discriminant analysis (FDA); fault detection;
D O I
10.1016/j.eswa.2006.12.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper improves kernel principal component analysis (KPCA) for fault detection from two aspects. Firstly, a feature vector selection (FVS) scheme based on a geometrical consideration is given to reduce the computational complexity of KPCA when the number of samples becomes large. Secondly, a KPCA plus Fisher discriminant analysis (FDA) scheme is adopted to improve the fault detection performance of KPCA. Simulation results are given to show the effectiveness of these improvements for fault detection performance in terms of low computational cost and high fault detection rate. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1210 / 1219
页数:10
相关论文
共 33 条
[1]  
Baudat G, 2001, IEEE IJCNN, P1244, DOI 10.1109/IJCNN.2001.939539
[2]   On-line batch process monitoring using MHMT-based MPCA [J].
Chen, JH ;
Chen, HH .
CHEMICAL ENGINEERING SCIENCE, 2006, 61 (10) :3223-3239
[3]   Dynamic process fault monitoring based on neural network and PCA [J].
Chen, JH ;
Liao, CM .
JOURNAL OF PROCESS CONTROL, 2002, 12 (02) :277-289
[4]  
Chiang L.H., 2001, ADV TK CONT SIGN PRO, P71
[5]   Fault identification for process monitoring using kernel principal component analysis [J].
Cho, JH ;
Lee, JM ;
Choi, SW ;
Lee, D ;
Lee, IB .
CHEMICAL ENGINEERING SCIENCE, 2005, 60 (01) :279-288
[6]   Fault detection and identification of nonlinear processes based on kernel PCA [J].
Choi, SW ;
Lee, C ;
Lee, JM ;
Park, JH ;
Lee, IB .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2005, 75 (01) :55-67
[7]   Nonlinear dynamic process monitoring based on dynamic kernel PCA [J].
Choi, SW ;
Lee, IB .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (24) :5897-5908
[8]   Fault detection and isolation using correspondence analysis [J].
Detroja, KP ;
Gudi, RD ;
Patwardhan, SC ;
Roy, K .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (01) :223-235
[9]   Nonlinear principal component analysis - Based on principal curves and neural networks [J].
Dong, D ;
McAvoy, TJ .
COMPUTERS & CHEMICAL ENGINEERING, 1996, 20 (01) :65-78
[10]  
Fukunaga K., 1990, Introduction to Statistical Pattern Classification, DOI DOI 10.1016/B978-0-08-047865-4.50007-7