Development of an effective gene delivery system: a study of complexes composed of a peptide-based amphiphilic DNA compaction agent and phospholipid

被引:25
作者
Murphy, EA [1 ]
Waring, AJ
Murphy, JC
Willson, RC
Longmuir, KJ
机构
[1] Univ Calif Irvine, Coll Med, Dept Physiol & Biophys, Irvine, CA 92697 USA
[2] Univ Calif Los Angeles, Harbor Res & Educ Inst, Dept Pediat, Div Med Genet, Torrance, CA 90502 USA
[3] Univ Houston, Dept Chem Engn, Houston, TX 77204 USA
关键词
D O I
10.1093/nar/29.17.3694
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We recently described a basic technology to efficiently combine compacted DNA with phospholipids and hydrophobic peptides, to produce homogenous complexes that are completely resistant to nuclease. We have developed this technology further to form gene delivery complexes that transfect cells effectively in vitro. In addition to plasmid DNA, the complexes contained two basic components: (i) a DNA compacting peptide (-CGKKKFKLKH), either conjugated to lipid or extended to contain (WLPLPWGW-) and (ii) either phosphatidytethanolamine or phosphatidylcholine. Complexes containing a 5.5-fold charge equivalence (peptide charge/DNA charge) of WLPLPWGWCGKKKFKLKH and 5 nmol dimyristoleoylphosphatidylethanolamine/mug DNA produced the highest luciferase gene expression, exceeding 1 x 10(9) relative light units/s/mg protein (>3 mug luciferase per mg protein). These complexes transfected OVCAR-3, COS-7 and HeLa cells at either similar or superior levels when compared to polyethylenimine or lipofectamine complexes. With green fluorescent protein reporter gene, > 50% of HeLa cells were positive 30 h after addition of these complexes. Furthermore, these optimal complexes were the least sensitive to pre-treatment of cells with chloroquine, indicating efficient endosomal escape. Our results indicated that self-assembling complexes of plasmid DNA, amphiphilic peptide and phosphatidylethanolamine are highly effective non-viral gene delivery systems.
引用
收藏
页码:3694 / 3704
页数:11
相关论文
共 43 条
[1]   Polyethylenimine-mediated gene transfer into pancreatic tumor dissemination in the murine peritoneal cavity [J].
Aoki, K ;
Furuhata, S ;
Hatanaka, K ;
Maeda, M ;
Remy, JS ;
Behr, JP ;
Terada, M ;
Yoshida, T .
GENE THERAPY, 2001, 8 (07) :508-514
[2]   DNA condensation [J].
Bloomfield, VA .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1996, 6 (03) :334-341
[3]   SIMPLIFIED PROTEIN ASSAY WITH FLUORESCAMINE IN SAMPLES CONTAINING INTERFERING MATERIAL [J].
BOHLEN, P ;
STEIN, S ;
IMAI, K ;
UDENFRIEND, S .
ANALYTICAL BIOCHEMISTRY, 1974, 58 (02) :559-562
[4]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[5]   A NUCLEAR-LOCALIZATION SIGNAL WITHIN HIV-1 MATRIX PROTEIN THAT GOVERNS INFECTION OF NONDIVIDING CELLS [J].
BUKRINSKY, MI ;
HAGGERTY, S ;
DEMPSEY, MP ;
SHAROVA, N ;
ADZHUBEI, A ;
SPITZ, L ;
LEWIS, P ;
GOLDFARB, D ;
EMERMAN, M ;
STEVENSON, M .
NATURE, 1993, 365 (6447) :666-669
[6]   In vivo delivery to tumors of DNA complexed with linear polyethylenimine [J].
Coll, JL ;
Chollet, P ;
Brambilla, E ;
Desplanques, D ;
Behr, JP ;
Favrot, M .
HUMAN GENE THERAPY, 1999, 10 (10) :1659-1666
[7]   TRANSFERRIN POLYCATION-MEDIATED INTRODUCTION OF DNA INTO HUMAN LEUKEMIC-CELLS - STIMULATION BY AGENTS THAT AFFECT THE SURVIVAL OF TRANSFECTED DNA OR MODULATE TRANSFERRIN RECEPTOR LEVELS [J].
COTTEN, M ;
LANGLEROUAULT, F ;
KIRLAPPOS, H ;
WAGNER, E ;
MECHTLER, K ;
ZENKE, M ;
BEUG, H ;
BIRNSTIEL, ML .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (11) :4033-4037
[8]   A physicochemical approach for predicting the effectiveness of peptide-based gene delivery systems for use in plasmid-based gene therapy [J].
Duguid, JG ;
Li, C ;
Shi, M ;
Logan, MJ ;
Alila, H ;
Rolland, A ;
Tomlinson, E ;
Sparrow, JT ;
Smith, LC .
BIOPHYSICAL JOURNAL, 1998, 74 (06) :2802-2814
[9]   Putative role of chloroquine in gene transfer into a human hepatoma cell line by DNA lactosylated polylysine complexes [J].
Erbacher, P ;
Roche, AC ;
Monsigny, M ;
Midoux, P .
EXPERIMENTAL CELL RESEARCH, 1996, 225 (01) :186-194
[10]   Nomenclature for synthetic gene delivery systems [J].
Felgner, PL ;
Barenholz, Y ;
Behr, JP ;
Cheng, SH ;
Cullis, P ;
Huang, L ;
Jessee, JA ;
Seymour, L ;
Szoka, F ;
Thierry, AR ;
Wagner, E ;
Wu, G .
HUMAN GENE THERAPY, 1997, 8 (05) :511-512