Optoelectronic properties of polymer-nanocrystal composites active at near-infrared wavelengths

被引:33
作者
Solomeshch, O [1 ]
Kigel, A [1 ]
Saschiuk, A [1 ]
Medvedev, V [1 ]
Aharoni, A [1 ]
Razin, A [1 ]
Eichen, Y [1 ]
Banin, U [1 ]
Lifshitz, E [1 ]
Tessler, N [1 ]
机构
[1] Technion Israel Inst Technol, Nanoelect Ctr, Dept Elect Engn, IL-32000 Haifa, Israel
关键词
D O I
10.1063/1.2064307
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report a systematic study of the optoelectronic processes occurring in composites made of near-infrared (IR) emitting nanocrystals and conjugated polymers. We focus on PbSe and InAs/ZnSe blended with polyphenylenevinylene-type polymers. We find that the process responsible for quenching the visible luminescence of the polymer by the nanocrystal varies depending on the nanocrystal composite. Moreover, the high (66%) energy-transfer efficiency from the polymer to the PbSe nanocrystal does result in significant emission at the near IR. Our measurements suggest that the host may be doping the PbSe nanocrystal, thus making the nonradiative Auger process favorable. For InAs we find the energy levels well aligned inside the polymer band gap, making it an efficient charge trap which acts as a luminescence center. Through two-dimensional numerical modeling of the charge transport in such composite films we highlight the importance of morphology (nanocrystal distribution) control. (c) 2005 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 30 条
[1]   Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer [J].
Bakueva, L ;
Musikhin, S ;
Hines, MA ;
Chang, TWF ;
Tzolov, M ;
Scholes, GD ;
Sargent, EH .
APPLIED PHYSICS LETTERS, 2003, 82 (17) :2895-2897
[2]  
Becker H, 2000, ADV MATER, V12, P42, DOI 10.1002/(SICI)1521-4095(200001)12:1<42::AID-ADMA42>3.0.CO
[3]  
2-F
[4]   PbSe/PbS and PbSe/PbSexS1-x core/shell nanoparticles [J].
Brumer, M ;
Kigel, A ;
Amirav, L ;
Sashchiuk, A ;
Solomesch, O ;
Tessler, N ;
Lifshitz, E .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (07) :1111-1116
[5]  
Cao YW, 1999, ANGEW CHEM INT EDIT, V38, P3692, DOI 10.1002/(SICI)1521-3773(19991216)38:24<3692::AID-ANIE3692>3.0.CO
[6]  
2-W
[7]   Growth and properties of semiconductor core/shell nanocrystals with InAs cores [J].
Cao, YW ;
Banin, U .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (40) :9692-9702
[8]   Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J].
Coe, S ;
Woo, WK ;
Bawendi, M ;
Bulovic, V .
NATURE, 2002, 420 (6917) :800-803
[9]  
COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0
[10]   Device model investigation of bilayer organic light emitting diodes [J].
Crone, BK ;
Davids, PS ;
Campbell, IH ;
Smith, DL .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (04) :1974-1982