Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network

被引:132
作者
Lee, Joungmin [1 ,2 ]
Yun, Hongseok [1 ,2 ]
Feist, Adam M. [3 ]
Palsson, Bernhard O. [3 ]
Lee, Sang Yup [1 ,2 ,4 ,5 ]
机构
[1] Korea Adv Inst Sci & Technol, Metab & Biomol Engn Natl Res Lab, Dept Chem & Biomol Engn, Ctr Syst & Synthet Biotechnol,Program BK21, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Inst BioCentury, Taejon 305701, South Korea
[3] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[4] Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Dept Biol Sci, Taejon 305701, South Korea
[5] Korea Adv Inst Sci & Technol, Bioinformat Res Ctr, Taejon 305701, South Korea
关键词
genome-scale metabolic network; in silico; metabolic flux analysis; Clostridium acetobutylicum; butanol;
D O I
10.1007/s00253-008-1654-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To understand the metabolic characteristics of Clostridium acetobutylicum and to examine the potential for enhanced butanol production, we reconstructed the genome-scale metabolic network from its annotated genomic sequence and analyzed strategies to improve its butanol production. The generated reconstructed network consists of 502 reactions and 479 metabolites and was used as the basis for an in silico model that could compute metabolic and growth performance for comparison with fermentation data. The in silico model successfully predicted metabolic fluxes during the acidogenic phase using classical flux balance analysis. Nonlinear programming was used to predict metabolic fluxes during the solventogenic phase. In addition, essential genes were predicted via single gene deletion studies. This genome-scale in silico metabolic model of C. acetobutylicum should be useful for genome-wide metabolic analysis as well as strain development for improving production of biochemicals, including butanol.
引用
收藏
页码:849 / 862
页数:14
相关论文
共 70 条
[1]   CLONING AND EXPRESSION IN SACCHAROMYCES-CEREVISIAE OF THE NAD(P)H-DEPENDENT XYLOSE REDUCTASE-ENCODING GENE (XYL1) FROM THE XYLOSE-ASSIMILATING YEAST PICHIA-STIPITIS [J].
AMORE, R ;
KOTTER, P ;
KUSTER, C ;
CIRIACY, M ;
HOLLENBERG, CP .
GENE, 1991, 109 (01) :89-97
[2]  
ATSUMI S, 2008, METABOLIC ENG ESCHER, DOI DOI 10.1016/JYMBEN200708003
[3]   TOWARD A SCIENCE OF METABOLIC ENGINEERING [J].
BAILEY, JE .
SCIENCE, 1991, 252 (5013) :1668-1675
[4]   Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation [J].
Becker, SA ;
Palsson, BO .
BMC MICROBIOLOGY, 2005, 5 (1)
[5]   Flux analysis of underdetermined metabolic networks: The quest for the missing constraints [J].
Bonarius, HPJ ;
Schmid, G ;
Tramper, J .
TRENDS IN BIOTECHNOLOGY, 1997, 15 (08) :308-314
[6]   Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism [J].
Borodina, I ;
Krabben, P ;
Nielsen, J .
GENOME RESEARCH, 2005, 15 (06) :820-829
[7]   New surveyor tools for charting microbial metabolic maps [J].
Breitling, Rainer ;
Vitkup, Dennis ;
Barrett, Michael P. .
NATURE REVIEWS MICROBIOLOGY, 2008, 6 (02) :156-161
[8]   MetaCyc: a multiorganism database of metabolic pathways and enzymes [J].
Caspi, Ron ;
Foerster, Hartmut ;
Fulcher, Carol A. ;
Hopkinson, Rebecca ;
Ingraham, John ;
Kaipa, Pallavi ;
Krummenacker, Markus ;
Paley, Suzanne ;
Pick, John ;
Rhee, Seung Y. ;
Tissier, Christophe ;
Zhang, Peifen ;
Karp, Peter D. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D511-D516
[9]   Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints [J].
Desai, RP ;
Nielsen, LK ;
Papoutsakis, ET .
JOURNAL OF BIOTECHNOLOGY, 1999, 71 (1-3) :191-205
[10]   Metabolic Flux Analysis Elucidates the Importance of the Acid-Formation Pathways in Regulating Solvent Production by Clostridium acetobutylicum [J].
Desai, Ruchir P. ;
Harris, Latonia M. ;
Welker, Neil E. ;
Papoutsakis, Eleftherios T. .
METABOLIC ENGINEERING, 1999, 1 (03) :206-213