Heterogeneous nanostructured electrode materials for electrochemical energy storage

被引:435
作者
Liu, Ran [1 ]
Duay, Jonathon [1 ]
Lee, Sang Bok [1 ,2 ]
机构
[1] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
[2] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol WCU, Taejon 305701, South Korea
关键词
LITHIUM-ION BATTERIES; PERFORMANCE ANODE MATERIAL; CORE-SHELL NANOWIRES; LI-ION; HIGH-CAPACITY; CARBON NANOTUBE; HIGH-POWER; MANGANESE OXIDE; NANOCOMPOSITE ELECTRODE; NEGATIVE ELECTRODES;
D O I
10.1039/c0cc03158e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In order to fulfil the future requirements of electrochemical energy storage, such as high energy density at high power demands, heterogeneous nanostructured materials are currently studied as promising electrode materials due to their synergic properties, which arise from integrating multi-nanocomponents, each tailored to address a different demand (e. g., high energy density, high conductivity, and excellent mechanical stability). In this article, we discuss these heterogeneous nanomaterials based on their structural complexity: zero-dimensional (0-D) (e. g. core-shell nanoparticles), one-dimensional (1-D) (e. g. coaxial nanowires), two-dimensional (2-D) (e. g. graphene based composites), three-dimensional (3-D) (e. g. mesoporous carbon based composites) and the even more complex hierarchical 3-D nanostructured networks. This review tends to focus more on ordered arrays of 1-D heterogeneous nanomaterials due to their unique merits. Examples of different types of structures are listed and their advantages and disadvantages are compared. Finally a future 3-D heterogeneous nanostructure is proposed, which may set a goal toward developing ideal nano-architectured electrodes for future electrochemical energy storage devices.
引用
收藏
页码:1384 / 1404
页数:21
相关论文
共 152 条
[1]   Polyaniline Nanocoating on the Surface of Layered Li[Li0.2Co0.1Mn0.7]O2 Nanodisks and Enhanced Cyclability as a Cathode Electrode for Rechargeable Lithium-Ion Battery [J].
Ahn, Docheon ;
Koo, Yang-Mo ;
Kim, Min Gyu ;
Shin, Namsoo ;
Park, Jaehun ;
Eom, Junho ;
Cho, Jaephil ;
Shin, Tae Joo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (08) :3675-3680
[2]   Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries [J].
Amatucci, G ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (12) :K31-K46
[3]   High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole [J].
An, KH ;
Jeon, KK ;
Heo, JK ;
Lim, SC ;
Bae, DJ ;
Lee, YH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (08) :A1058-A1062
[4]  
[Anonymous], 1999, ELECTROCHEMICAL SUPE
[5]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[6]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[7]   Nanotubes with the TiO2-B structure [J].
Armstrong, G ;
Armstrong, AR ;
Canales, J ;
Bruce, PG .
CHEMICAL COMMUNICATIONS, 2005, (19) :2454-2456
[8]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[9]   Chemical reduction of SiCl4 for the preparation of silicon-graphite composites used as negative electrodes in lithium-ion batteries [J].
Cahen, S. ;
Janot, R. ;
Laffont-Dantras, L. ;
Tarascon, J. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (07) :A512-A519
[10]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35