Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana

被引:325
作者
Lahner, B
Gong, JM
Mahmoudian, M
Smith, EL
Abid, KB
Rogers, EE
Guerinot, ML
Harper, JF
Ward, JM
McIntyre, L
Schroeder, JI
Salt, DE
机构
[1] Purdue Univ, Ctr Plant Environm Stress Physiol, W Lafayette, IN 47907 USA
[2] Univ Calif San Diego, Div Biol Sci, Cell & Dev Biol Sect, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Ctr Mol Genet, La Jolla, CA 92093 USA
[4] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA
[5] Univ Missouri, Dept Nutr Sci, Columbia, MO 65211 USA
[6] Scripps Res Inst, Dept Cell Biol, La Jolla, CA 92037 USA
[7] Univ Minnesota, Dept Plant Biol, Biol Sci Ctr 250, St Paul, MN 55108 USA
[8] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA
关键词
D O I
10.1038/nbt865
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Understanding the functional connections between genes, proteins, metabolites and mineral ions is one of biology's greatest challenges in the postgenomic era. We describe here the use of mineral nutrient and trace element profiling as a tool to determine the biological significance of connections between a plant's genome and its elemental profile. Using inductively coupled plasma spectroscopy, we quantified 18 elements, including essential macro- and micronutrients and various nonessential elements, in shoots of 6,000 mutagenized M2 Arabidopsis thaliana plants. We isolated 51 mutants with altered elemental profiles. One mutant contains a deletion in FRD3, a gene known to control iron-deficiency responses in A. thaliana. Based on the frequency of elemental profile mutations, we estimate 2-4% of the A. thaliana genome is involved in regulating the plant's nutrient and trace element content. These results demonstrate the utility of elemental profiling as a useful functional genomics tool.
引用
收藏
页码:1215 / 1221
页数:7
相关论文
共 25 条
  • [1] DNA microarrays for functional plant genomics
    Aharoni, A
    Vorst, O
    [J]. PLANT MOLECULAR BIOLOGY, 2002, 48 (1-2) : 99 - 118
  • [2] National Science Foundation-Sponsored Workshop report: "The 2010 Project" - Functional genomics and the virtual plant. A blueprint for understanding how plants are built and how to improve them
    Chory, J
    Ecker, JR
    Briggs, S
    Caboche, M
    Coruzzi, GM
    Cook, D
    Dangl, J
    Grant, S
    Guerinot, ML
    Henikoff, S
    Martienssen, R
    Okada, K
    Raikhel, NV
    Somerville, CR
    Weigel, D
    [J]. PLANT PHYSIOLOGY, 2000, 123 (02) : 423 - 425
  • [3] Top ten biotechnologies for improving health in developing countries
    Daar, AS
    Thorsteinsdóttir, H
    Martin, DK
    Smith, AC
    Nast, S
    Singer, PA
    [J]. NATURE GENETICS, 2002, 32 (02) : 229 - 232
  • [4] DANGL J, 2002, PLANT PHYSIOL, V130, P1741
  • [5] A metal-accumulator mutant of Arabidopsis thaliana
    Delhaize, E
    [J]. PLANT PHYSIOLOGY, 1996, 111 (03) : 849 - 855
  • [6] Metabolite profiling for plant functional genomics
    Fiehn, O
    Kopka, J
    Dörmann, P
    Altmann, T
    Trethewey, RN
    Willmitzer, L
    [J]. NATURE BIOTECHNOLOGY, 2000, 18 (11) : 1157 - 1161
  • [7] Microarray data quality analysis: lessons from the AFGC project
    Finkelstein, D
    Ewing, R
    Gollub, J
    Sterky, F
    Cherry, JM
    Somerville, S
    [J]. PLANT MOLECULAR BIOLOGY, 2002, 48 (1-2) : 119 - 131
  • [8] Fortified foods and phytoremediation. Two sides of the same coin
    Guerinot, ML
    Salt, DE
    [J]. PLANT PHYSIOLOGY, 2001, 125 (01) : 164 - 167
  • [9] Differentiation of vegetable oils by mass spectrometry combined with statistical analysis
    Jakab, A
    Nagy, K
    Héberger, K
    Vékey, K
    Forgács, E
    [J]. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2002, 16 (24) : 2291 - 2297
  • [10] Johnson R. A., 1992, APPL MULTIVARIATE ST, V4