Layer-by-layer electrostatic self-assembly of single-wall carbon nanotube polyelectrolytes

被引:117
作者
Paloniemi, H [1 ]
Lukkarinen, M
Aäritalo, T
Areva, S
Leiro, J
Heinonen, M
Haapakka, K
Lukkari, J
机构
[1] Univ Turku, Dept Chem, Turku 20014, Finland
[2] Grad Sch Mat Res, Turku, Finland
[3] Abo Akad Univ, Dept Phys Chem, Turku 20500, Finland
[4] Univ Turku, Mat Sci Lab, Turku 20014, Finland
关键词
D O I
10.1021/la051736i
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have used anionic and cationic single-wall carbon nanotube polyelectrolytes (SWNT-PEs), prepared by the noncovalent adsorption of ionic naphthalene or pyrene derivatives on nanotube sidewalls, for the layer-by-layer self-assembly to prepare multilayers from carbon nanotubes with polycations, such as poly(diallyldimethylammonium) or poly(allylamine hydrochloride) (PDADMA or PAH, respectively), and polyanions (poly(styrenesulfonate), PSS). This is a general and powerful technique for the fabrication of thin carbon nanotube films of arbitrary composition and architecture and allows also an easy preparation of all-SWNT (SWNT/SWNT) multilayers. The multilayers were characterized with vis-near-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) measurements, atomic force microscopy (AFM), and imaging ellipsometry. The charge compensation in multilayers is mainly intrinsic, which shows the electrostatic nature of the self-assembly process. The multilayer growth is linear after the initial layers, and in SWNT/polyelectrolyte films it can be greatly accelerated by increasing the ionic strength in the SWNT solution. However, SWNT/SWNT multilayers are much more inert to the effect of added electrolyte. In SWNT/SWNT multilayers, the adsorption results in the deposition of 1-3 theoretical nanotube monolayers per adsorbed layer, whereas the nominal SWNT layer thickness is 2-3 times higher in SWNT/polyelectrolyte films prepared with added electrolyte. AFM images show that the multilayers contain a random network of nanotube bundles lying on the surface. Flexible polyelectrolytes (e.g., PDADMA, PSS) probably surround the nanotubes and bind them together. On macroscopic scale, the surface roughness of the multilayers depends on the components and increases with the film thickness.
引用
收藏
页码:74 / 83
页数:10
相关论文
共 85 条
[1]   Assembling alternate dye-polyion molecular films by electrostatic layer-by-layer adsorption [J].
Ariga, K ;
Lvov, Y ;
Kunitake, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (09) :2224-2231
[2]   Layer-by-layer electrostatic self-assembly of polyelectrolyte nanoshells on individual carbon nanotube templates [J].
Artyukhin, AB ;
Bakajin, O ;
Stroeve, P ;
Noy, A .
LANGMUIR, 2004, 20 (04) :1442-1448
[3]   Molecular electronics with carbon nanotubes [J].
Avouris, P .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1026-1034
[4]   Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes [J].
Baskaran, D ;
Mays, JW ;
Bratcher, MS .
CHEMISTRY OF MATERIALS, 2005, 17 (13) :3389-3397
[5]   A generic organometallic approach toward ultra-strong carbon nanotube polymer composites [J].
Blake, R ;
Gun'ko, YK ;
Coleman, J ;
Cadek, M ;
Fonseca, A ;
Nagy, JB ;
Blau, WJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (33) :10226-10227
[6]   Reinforcement of polymers with carbon nanotubes:: The role of nanotube surface area [J].
Cadek, M ;
Coleman, JN ;
Ryan, KP ;
Nicolosi, V ;
Bister, G ;
Fonseca, A ;
Nagy, JB ;
Szostak, K ;
Béguin, F ;
Blau, WJ .
NANO LETTERS, 2004, 4 (02) :353-356
[7]   Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J].
Chen, RJ ;
Zhang, YG ;
Wang, DW ;
Dai, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (16) :3838-3839
[8]   Influence of the degree of ionization on weak polyelectrolyte multilayer assembly [J].
Choi, J ;
Rubner, MF .
MACROMOLECULES, 2005, 38 (01) :116-124
[9]   Layer-by-layer assembly of multiwall carbon nanotubes on spherical colloids [J].
Correa-Duarte, MA ;
Kosiorek, A ;
Kandulski, W ;
Giersig, M ;
Liz-Marzán, LM .
CHEMISTRY OF MATERIALS, 2005, 17 (12) :3268-3272
[10]  
CORREADUARTE MA, 2004, NANO LETT, V4, P1889