A 13C isotope labeling strategy reveals the influence of insulin signaling on lipogenesis in C-elegans
被引:149
作者:
Perez, Carissa L.
论文数: 0引用数: 0
h-index: 0
机构:
Fred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USA
Univ Washington, Mol & Cellular Biol Program, Seattle, WA 98195 USAFred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USA
Perez, Carissa L.
[1
,2
]
Van Gilst, Marc R.
论文数: 0引用数: 0
h-index: 0
机构:
Fred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USAFred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USA
Van Gilst, Marc R.
[1
]
机构:
[1] Fred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USA
[2] Univ Washington, Mol & Cellular Biol Program, Seattle, WA 98195 USA
Although studies in C. elegans have identified numerous genes involved in fat storage, the next step is to determine how these factors actually affect in vivo lipid metabolism. We have developed a C-13 isotope assay to quantify the contribution of dietary fat absorption and de novo synthesis to fat storage and membrane lipid production in C. elegans, establishing the means by which worms obtain and process fatty acids. We applied this method to characterize how insulin signaling affects lipid physiology. Several long-lived mutations in the insulin receptor gene daf-2 resulted in significantly higher levels of synthesized fats in triglycerides and phospholipids. This elevation of fat synthesis was completely dependent upon daf-16/FoxO. Other long-lived alleles of daf-2 did not increase fat synthesis, however, suggesting that site-specific mutations in the insulin receptor can differentially influence longevity and metabolism, and that elevated lipid synthesis is not required for the longevity of daf-2 mutants.