A lower bound for the mass of axisymmetric connected black hole data sets

被引:8
作者
Chrusciel, Piotr T. [1 ]
Luc Nguyen [2 ]
机构
[1] Univ Vienna, Vienna, Austria
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
英国工程与自然科学研究理事会;
关键词
RIEMANNIAN PENROSE INEQUALITY; POSITIVE MASS;
D O I
10.1088/0264-9381/28/12/125001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a generalization of the Brill-type proof of positivity of mass for axisymmetric initial data to initial data sets with black hole boundaries. The argument leads to a strictly positive lower bound for the mass of simply connected and connected axisymmetric black hole data sets in terms of the mass of a reference Schwarzschild metric.
引用
收藏
页数:19
相关论文
共 17 条
[1]  
ACENA A, 2010, ARXIV10122413GRQC
[2]  
[Anonymous], 1998, ANAL REELLE COMPLEXE
[3]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[4]   THE MASS OF AN ASYMPTOTICALLY FLAT MANIFOLD [J].
BARTNIK, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (05) :661-693
[5]  
Bray HL, 2001, J DIFFER GEOM, V59, P177
[7]  
Chruciel P., 1986, NATO Adv. Sci. Inst. Ser. B Phys., P49
[8]   Mass and angular-momentum inequalities for axi-symmetric initial data sets I. Positivity of mass [J].
Chrusciel, Piotr T. .
ANNALS OF PHYSICS, 2008, 323 (10) :2566-2590
[9]  
Chrusciel PT, 2008, ASTERISQUE, P195
[10]   A 'finite infinity' version of topological censorship [J].
Galloway, GJ .
CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (06) :1471-1478