Post-translational modification of therapeutic peptides by NisB, the dehydratase of the lantibiotic nisin

被引:128
作者
Kluskens, LD
Kuipers, A
Rink, R
de Boef, E
Fekken, S
Driessen, AJM
Kuipers, OP
Moll, GN
机构
[1] BiOMaDe Technol Fdn, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Dept Microbiol, Groningen Biomol Sci & Biotechnol Inst, NL-9751 NN Haren, Netherlands
[3] Univ Groningen, Dept Mol Genet, Groningen Biomol Sci & Biotechnol Inst, NL-9751 NN Haren, Netherlands
关键词
D O I
10.1021/bi050805p
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Post-translationally introduced dehydroamino acids often play an important role in the activity and receptor specificity of biologically active peptides. In addition, a dehydroamino acid can be coupled to a cysteine to yield a cyclized peptide with increased biostability and resistance against proteolytic degradation and/or modified specificity. The lantibiotic nisin is an antimicrobial peptide produced by Lactococcus lactis. Its post-translational enzymatic modification involves NisB-mediated dehydration of serines and threonines and NisC-catalyzed coupling of cysteines to dehydroresidues, followed by NisT-mediated secretion. Here, we demonstrate that a L. lactis strain containing the nisBTC genes effectively dehydrates and secretes a wide range of medically relevant nonlantibiotic peptides among which variants of adrenocorticotropic hormone, vasopressin, an inhibitor of tripeptidyl peptidase II, enkephalin, luteinizing hormone-releasing hormone, angiotensin, and erythropoietin. For most of these peptides, ring formation was demonstrated. These data show that lantibiotic enzymes can be applied for the modification of peptides, thereby enabling the biotechnological production of dehydroresidue-containing and/or thioether-bridged therapeutic peptides with enhanced stability and/or modulated activities.
引用
收藏
页码:12827 / 12834
页数:8
相关论文
共 46 条
[1]   Engineering of a novel thioether bridge and role of modified residues in the lantibiotic pep5 [J].
Bierbaum, G ;
Szekat, C ;
Josten, M ;
Heidrich, C ;
Kempter, C ;
Jung, G ;
Sahl, HG .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (02) :385-392
[2]  
BIERBAUM G, 1999, AMINO ACIDS PEPTIDES, P275
[3]   Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic [J].
Breukink, E ;
Wiedemann, I ;
van Kraaij, C ;
Kuipers, OP ;
Sahl, HG ;
de Kruijff, B .
SCIENCE, 1999, 286 (5448) :2361-2364
[4]   Biosynthesis and mode of action of lantibiotics [J].
Chatterjee, C ;
Paul, M ;
Xie, LL ;
van der Donk, WA .
CHEMICAL REVIEWS, 2005, 105 (02) :633-683
[5]   β-nitro-α-amino acids as latent α,β-dehydro-α-amino acid residues in peptides [J].
Coghlan, PA ;
Easton, CJ .
TETRAHEDRON LETTERS, 1999, 40 (25) :4745-4748
[6]   STRUCTURE OF NISIN [J].
GROSS, E ;
MORELL, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1971, 93 (18) :4634-+
[7]  
Holo H, 1995, Methods Mol Biol, V47, P195
[8]   MINIMAL REQUIREMENTS FOR EXPONENTIAL-GROWTH OF LACTOCOCCUS-LACTIS [J].
JENSEN, PR ;
HAMMER, K .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1993, 59 (12) :4363-4366
[9]   Identification of a 13 amino acid peptide mimetic of erythropoietin and description of amino acids critical for the mimetic activity of EMP1 [J].
Johnson, DL ;
Farrell, FX ;
Barbone, FP ;
McMahon, FJ ;
Tullai, J ;
Hoey, K ;
Livnah, O ;
Wrighton, NC ;
Middleton, SA ;
Loughney, DA ;
Stura, EA ;
Dower, WJ ;
Mulcahy, LS ;
Wilson, IA ;
Jolliffe, LK .
BIOCHEMISTRY, 1998, 37 (11) :3699-3710
[10]  
JOST K, 1987, HDB NEUROHYPOPHYSEAL, P144