Generalized p-values and the multivariate Behrens-Fisher problem

被引:7
作者
Gamage, JK
机构
[1] 4520 Department of Mathematics, Illinois State University, Normal
关键词
D O I
10.1016/S0024-3795(96)00166-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tsui and Weerahandi (1989) defined generalized p-values for testing statistical hypothesis in the presence of nuisance parameters and applied to obtain an exact solution to the univariate Behrens-Fisher problem. Johnson and Weerahandi (1988) provided a Bayesian solution to the multivariate Behrens-Fisher problem. With the help of the Cauchy-Schwarz inequality we provide an upper bound for the generalized p-value for the multivariate case. Also we extend the result of Tsui and Weerahandi to present a second upper bound. (C) Elsevier Science Inc., 1997.
引用
收藏
页码:369 / 377
页数:9
相关论文
共 6 条
[1]   A BAYESIAN SOLUTION TO THE MULTIVARIATE BEHRENS-FISHER PROBLEM [J].
JOHNSON, RA ;
WEERAHANDI, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (401) :145-149
[2]  
Richard A. J., 1992, APPL MULTIVARIATE ST
[3]  
RUPERT G, 1981, SIMULTANEOUS STAT IN
[4]   A METHOD FOR JUDGING ALL CONTRASTS IN THE ANALYSIS OF VARIANCE [J].
SCHEFFE, H .
BIOMETRIKA, 1953, 40 (1-2) :87-104
[5]   GENERALIZED P-VALUES IN SIGNIFICANCE TESTING OF HYPOTHESES IN THE PRESENCE OF NUISANCE PARAMETERS [J].
TSUI, KW ;
WEERAHANDI, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (406) :602-607
[6]  
WEERAHANDI S, 1995, EXACT STAT METH DATA