Toward synthetic viruses:: Endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo

被引:276
作者
Walker, GF [1 ]
Fella, C [1 ]
Pelisek, J [1 ]
Fahrmeir, J [1 ]
Boeckle, S [1 ]
Ogris, M [1 ]
Wagner, E [1 ]
机构
[1] Univ Munich, Dept Pharm, D-81377 Munich, Germany
关键词
polyethylenimine; subcutaneous tumors; bioreversible; PEG shielding; systemic gene targeting;
D O I
10.1016/j.ymthe.2004.11.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Nonviral vectors should undergo "virus-like" changes compatible with the steps of gene delivery. Poly(ethylene) glycol (PEG) shielding of DNA/polycation polyplexes protects from nonspecific interactions with the extracellular environment. pH-triggered removal of the shield within the endosome may be advantageous. Polycation and PEG were linked via acylhydrazides or pyridylhydrazines. The pyridylhydrazone prepared from polylysine and propionaldehyde-PEG showed the greatest acid-dependent hydrolysis; at pH 5, 37 degrees C for 10 min, 90% hydrolyzed, while at pH 7.4 the half-life was 1.5 h. Particle size and potential measurements of the polyplexes showed complete deshielding within 1 h at pH 5, while at pH 7.4 the shield remained at 4 h, 37 degrees C. For gene transfection a targeting conjugate was also included in the polyplex, transferrin as ligand for K562 and Neuro2A cells and epidermal growth factor for HUH-7 and Renca-EGFR cells. Marker gene expression showed that the reversibly shielded polyplexes exhibited up to 2 log orders of magnitude higher gene expression in vitro and 1 log magnitude higher gene expression in an in vivo mouse model, compared to the stably shielded control polyplexes. Engineering of polyplexes with more dynamic domains is an encouraging new direction in nonviral vector design.
引用
收藏
页码:418 / 425
页数:8
相关论文
共 39 条
[1]   Intracellular route and transcriptional competence of polyethylenimine-DNA complexes [J].
Bieber, T ;
Meissner, W ;
Kostin, S ;
Niemann, A ;
Elsasser, HP .
JOURNAL OF CONTROLLED RELEASE, 2002, 82 (2-3) :441-454
[2]   Different strategies for formation of PEGylated EGF-conjugated PEI/DNA complexes for targeted gene delivery [J].
Blessing, T ;
Kursa, M ;
Holzhauser, R ;
Kircheis, R ;
Wagner, E .
BIOCONJUGATE CHEMISTRY, 2001, 12 (04) :529-537
[3]   DETERMINATION OF POLYETHYLENE-GLYCOL IN GAMMA-GLOBULIN SOLUTIONS [J].
CHILDS, CE .
MICROCHEMICAL JOURNAL, 1975, 20 (02) :190-192
[4]   Low-pH-sensitive PEG-stabilized plasmid-lipid nanoparticles: Preparation and characterization [J].
Choi, JS ;
MacKay, JA ;
Szoka, FC .
BIOCONJUGATE CHEMISTRY, 2003, 14 (02) :420-429
[5]   Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier [J].
Choi, YH ;
Liu, F ;
Kim, JS ;
Choi, YK ;
Park, JS ;
Kim, SW .
JOURNAL OF CONTROLLED RELEASE, 1998, 54 (01) :39-48
[6]   TRANSFERRIN POLYCATION-MEDIATED INTRODUCTION OF DNA INTO HUMAN LEUKEMIC-CELLS - STIMULATION BY AGENTS THAT AFFECT THE SURVIVAL OF TRANSFECTED DNA OR MODULATE TRANSFERRIN RECEPTOR LEVELS [J].
COTTEN, M ;
LANGLEROUAULT, F ;
KIRLAPPOS, H ;
WAGNER, E ;
MECHTLER, K ;
ZENKE, M ;
BEUG, H ;
BIRNSTIEL, ML .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (11) :4033-4037
[7]   Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery [J].
Dash, PR ;
Read, ML ;
Barrett, LB ;
Wolfert, M ;
Seymour, LW .
GENE THERAPY, 1999, 6 (04) :643-650
[8]  
Demeneix Barbara A., 1996, P146
[9]  
Erbacher P, 1999, J GENE MED, V1, P210
[10]  
GREENFIELD RS, 1990, CANCER RES, V50, P6600