Representative estimates of soil and ecosystem respiration in an old beech forest

被引:67
作者
Knohl, Alexander [1 ,2 ]
Soe, Astrid R. B. [2 ,3 ]
Kutsch, Werner L. [2 ]
Goeckede, Mathias [4 ]
Buchmann, Nina [1 ]
机构
[1] ETH, Inst Plant Sci, CH-8092 Zurich, Switzerland
[2] Max Planck Inst Biogeochem, D-07754 Jena, Germany
[3] Fertin Pharma, DK-7100 Vejle, Denmark
[4] Oregon State Univ, Dept Forest Sci, Corvallis, OR 97331 USA
关键词
carbon flux; eddy covariance; footprint; soil CO2 efflux; sampling design; uncertainty analysis; Monte Carlo simulation;
D O I
10.1007/s11104-007-9467-2
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Respiration has been proposed to be the main determinant of the carbon balance in European forests and is thus essential for our understanding of the carbon cycle. However, the choice of experimental design strongly affects estimates of annual respiration and of the contribution of soil respiration to total ecosystem respiration. In a detailed study of ecosystem and soil respiration fluxes in an old unmanaged deciduous forest in Central Germany over 3 years (2000-2002), we combined soil chamber and eddy covariance measurements to obtain a comprehensive picture of respiration in this forest. The closed portable chambers offered to investigate spatial variability of soil respiration and its controls while the eddy covariance system offered continuous measurements of ecosystem respiration. Over the year, both fluxes were mainly correlated with temperature. However, when soil moisture sank below 23 vol.% in the upper 6 cm, water limitations also became apparent. The temporal resolution of the eddy covariance system revealed that relatively high respiration rates occurred during budbreak due to increased metabolic activity and after leaf fall because of increased decomposition. Spatial variability in soil respiration rates was large and correlated with fine root biomass (r(2)=0.56) resulting in estimates of annual efflux varying across plots from 730 to 1,258 (mean 898) g C m(-2) year(-1). Power function calculations showed that achieving a precision in the soil respiration estimate of 20% of the full population mean at a confidence level of 95%, requires about eight sampling locations. Our results can be used as guidelines to improve the representativeness of soil respiration measurements by nested sampling designs, being applied in long-term and large-scale carbon sequestration projects such as FLUXNET and CarboEurope.
引用
收藏
页码:189 / 202
页数:14
相关论文
共 57 条
  • [1] Rhizosphere priming effect of Populus fremontii obscures the temperature sensitivity of soil organic carbon respiration
    Bader, Nicholas E.
    Cheng, Weixin
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2007, 39 (02) : 600 - 606
  • [2] Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future
    Baldocchi, DD
    [J]. GLOBAL CHANGE BIOLOGY, 2003, 9 (04) : 479 - 492
  • [3] EFFECT OF TEMPERATURE ON THE CO2/O2 SPECIFICITY OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE OXYGENASE AND THE RATE OF RESPIRATION IN THE LIGHT - ESTIMATES FROM GAS-EXCHANGE MEASUREMENTS ON SPINACH
    BROOKS, A
    FARQUHAR, GD
    [J]. PLANTA, 1985, 165 (03) : 397 - 406
  • [4] Brooks DJ, 2002, SOLVAY PHARMACEUT, V1, P5
  • [5] Biotic and abiotic factors controlling soil respiration rates in Picea abies stands
    Buchmann, N
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2000, 32 (11-12) : 1625 - 1635
  • [6] Europe-wide reduction in primary productivity caused by the heat and drought in 2003
    Ciais, P
    Reichstein, M
    Viovy, N
    Granier, A
    Ogée, J
    Allard, V
    Aubinet, M
    Buchmann, N
    Bernhofer, C
    Carrara, A
    Chevallier, F
    De Noblet, N
    Friend, AD
    Friedlingstein, P
    Grünwald, T
    Heinesch, B
    Keronen, P
    Knohl, A
    Krinner, G
    Loustau, D
    Manca, G
    Matteucci, G
    Miglietta, F
    Ourcival, JM
    Papale, D
    Pilegaard, K
    Rambal, S
    Seufert, G
    Soussana, JF
    Sanz, MJ
    Schulze, ED
    Vesala, T
    Valentini, R
    [J]. NATURE, 2005, 437 (7058) : 529 - 533
  • [7] Crawley M. J., 2002, STAT COMPUT
  • [8] A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest
    Davidson, EA
    Richardson, AD
    Savage, KE
    Hollinger, DY
    [J]. GLOBAL CHANGE BIOLOGY, 2006, 12 (02) : 230 - 239
  • [9] Minimizing artifacts and biases in chamber-based measurements of soil respiration
    Davidson, EA
    Savage, K
    Verchot, LV
    Navarro, R
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2002, 113 (1-4) : 21 - 37
  • [10] Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest
    Davidson, EA
    Belk, E
    Boone, RD
    [J]. GLOBAL CHANGE BIOLOGY, 1998, 4 (02) : 217 - 227