Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin

被引:106
作者
Tamarit, J [1 ]
Bellí, G [1 ]
Cabiscol, E [1 ]
Herrero, E [1 ]
Ros, J [1 ]
机构
[1] Univ Lleida, Fac Med, Dept Ciencies Med Basiques, Lleida, Spain
关键词
D O I
10.1074/jbc.M303477200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Grx5 is a yeast mitochondrial protein involved in iron-sulfur biogenesis that belongs to a recently described family of monothiolic glutaredoxin-like proteins. No member of this family has been biochemically characterized previously. Grx5 contains a conserved cysteine residue (Cys-60) and a non-conserved one (Cys-117). In this work, we have purified wild type and mutant C60S and C117S proteins and characterized their biochemical properties. A redox potential of - 175 mV was calculated for wild type Grx5. The pK(a) values obtained by titration of mutant proteins with iodoacetamide at different pHs were 5.0 for Cys-60 and 8.2 for Cys-117. When Grx5 was incubated with glutathione disulfide, a transient mixed disulfide was formed between glutathione and the cystein 60 of the protein because of its low pK(a). Binding of glutathione to Cys-60 promoted a decrease in the Cys-117 pK(a) value that triggered the formation of a disulfide bond between both cysteine residues of the protein, indicating that Cys-117 plays an essential role in the catalytic mechanism of Grx5. The disulfide bond in Grx5 could be reduced by GSH but at a rate at least 20 times slower than that observed for the reduction of glutaredoxin 1 from E. coli, a dithiolic glutaredoxin. This slow reduction rate could suggest that GSH may not be the physiologic reducing agent of Grx5. The fact that wild type Grx5 efficiently reduced a glutathiolated protein used as a substrate indicated that Grx5 may act as a thiol reductase inside the mitochondria.
引用
收藏
页码:25745 / 25751
页数:7
相关论文
共 42 条
[1]   IscU as a scaffold for iron-sulfur cluster biosynthesis: Sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU [J].
Agar, JN ;
Krebs, C ;
Frazzon, J ;
Huynh, BH ;
Dean, DR ;
Johnson, MK .
BIOCHEMISTRY, 2000, 39 (27) :7856-7862
[2]   Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria [J].
Åslund, F ;
Berndt, KD ;
Holmgren, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (49) :30780-30786
[3]   Structure-function analysis of yeast Grx5 monothiol glutaredoxin defines essential amino acids for the function of the protein [J].
Bellí, G ;
Polaina, J ;
Tamarit, J ;
de la Torre, MA ;
Rodríguez-Manzaneque, MT ;
Ros, J ;
Herrero, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (40) :37590-37596
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   STRUCTURAL AND FUNCTIONAL-CHARACTERIZATION OF THE MUTANT ESCHERICHIA-COLI GLUTAREDOXIN(C14-]S) AND ITS MIXED DISULFIDE WITH GLUTATHIONE [J].
BUSHWELLER, JH ;
ASLUND, F ;
WUTHRICH, K ;
HOLMGREN, A .
BIOCHEMISTRY, 1992, 31 (38) :9288-9293
[6]  
CABISCOL E, 1994, J BIOL CHEM, V269, P6592
[7]   The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation [J].
Cabiscol, E ;
Levine, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (09) :4170-4174
[8]   IDENTIFICATION OF AN ABUNDANT S-THIOLATED RAT-LIVER PROTEIN AS CARBONIC ANHYDRASE-III - CHARACTERIZATION OF S-THIOLATION AND DETHIOLATION REACTIONS [J].
CHAI, YC ;
JUNG, CH ;
LII, CK ;
ASHRAF, SS ;
HENDRICH, S ;
WOLF, B ;
SIES, H ;
THOMAS, JA .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1991, 284 (02) :270-278
[9]   Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: Evidence that Yfh1p affects Fe-S cluster synthesis [J].
Chen, OS ;
Hemenway, S ;
Kaplan, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (19) :12321-12326
[10]   The yeast glutaredoxins are active as glutathione peroxidases [J].
Collinson, EJ ;
Wheeler, GL ;
Garrido, EO ;
Avery, AM ;
Avery, SV ;
Grant, CM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (19) :16712-16717