κ opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses

被引:389
作者
McLaughlin, JP [1 ]
Marton-Popovici, M [1 ]
Chavkin, C [1 ]
机构
[1] Univ Washington, Dept Pharmacol, Seattle, WA 98195 USA
关键词
kappa-opioid; dynorphin; stress; depression; cocaine; conditioned place preference;
D O I
10.1523/jneurosci.23-13-05674.2003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Previous studies have demonstrated that stress may increase prodynorphin gene expression, and kappa opioid agonists suppress drug reward. Therefore, we tested the hypothesis that stress-induced release of endogenous dynorphin may mediate behavioral responses to stress and oppose the rewarding effects of cocaine. C57Bl/6 mice subjected to repeated forced swim testing (FST) using a modified Porsolt procedure at 30degreesC showed a characteristic stress-induced immobility response and a stress-induced analgesia observed with a tail withdrawal latency assay. Pretreatment with the kappa opioid receptor antagonist nor-binaltorphimine (nor-BNI; 10 mg/kg, i.p.) blocked the stress-induced analgesia and significantly reduced the stress-induced immobility. The nor-BNI sensitivity of the behavioral responses suggests an activation of the kappa opioid receptor by a stress-induced release of dynorphin peptides. Supporting this hypothesis, transgenic mice possessing a disrupted prodynorphin gene showed no increase in immobility or stress-induced analgesia after exposure to repeated FST. Because both stress and the kappa opioid system can modulate the response to drugs of abuse, we tested the effects of forced swim stress on cocaine-conditioned place preference (CPP). FST-exposed mice conditioned with cocaine (15 mg/kg, s.c.) showed significant potentiation of place preference for the drug-paired chamber over the responses of unstressed mice. Surprisingly, nor-BNI pretreatment blocked stress-induced potentiation of cocaine CPP. Consistent with this result, mice lacking the prodynorphin gene did not show a stress-induced potentiation of cocaine CPP, whereas wild-type littermates did. The findings suggest that chronic swim stress may activate the kappa opioid system to produce analgesia, immobility, and potentiation of the acute rewarding properties of cocaine in C57Bl/6 mice.
引用
收藏
页码:5674 / 5683
页数:10
相关论文
共 53 条
[1]  
Acri JB, 2001, SYNAPSE, V39, P343, DOI 10.1002/1098-2396(20010315)39:4<343::AID-SYN1018>3.0.CO
[2]  
2-Q
[3]   CONDITIONED PLACE PREFERENCE USING OPIATE AND STIMULANT-DRUGS - A METAANALYSIS [J].
BARDO, MT ;
ROWLETT, JK ;
HARRIS, MJ .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 1995, 19 (01) :39-51
[4]   Nonpeptidic δ-opioid receptor agonists reduce immobility in the forced swim assay in rats [J].
Broom, DC ;
Jutkiewicz, EM ;
Folk, JE ;
Traynor, JR ;
Rice, KC ;
Woods, JH .
NEUROPSYCHOPHARMACOLOGY, 2002, 26 (06) :744-755
[5]   Regulation of cocaine reward by CREB [J].
Carlezon, WA ;
Thome, J ;
Olson, VG ;
Lane-Ladd, SB ;
Brodkin, ES ;
Hiroi, N ;
Duman, RS ;
Neve, RL ;
Nestler, EJ .
SCIENCE, 1998, 282 (5397) :2272-2275
[6]  
Carr HA., 1989, NEUROPHARMACOLOGICAL, P264
[7]   DYNORPHIN IS A SPECIFIC ENDOGENOUS LIGAND OF THE KAPPA-OPIOID RECEPTOR [J].
CHAVKIN, C ;
JAMES, IF ;
GOLDSTEIN, A .
SCIENCE, 1982, 215 (4531) :413-415
[8]   Murine models of depression [J].
Dalvi, A ;
Lucki, I .
PSYCHOPHARMACOLOGY, 1999, 147 (01) :14-16
[9]   Mice deficient for δ- and γ-opioid receptors exhibit opposing alterations of emotional responses [J].
Filliol, D ;
Ghozland, S ;
Chluba, J ;
Martin, M ;
Matthes, HWD ;
Simonin, F ;
Befort, K ;
Gavériaux-Ruff, C ;
Dierich, A ;
LeMeur, M ;
Valverde, O ;
Maldonado, R ;
Kieffer, BL .
NATURE GENETICS, 2000, 25 (02) :195-200
[10]   KAPPA-OPIOID INHIBITION OF MORPHINE AND COCAINE SELF-ADMINISTRATION IN RATS [J].
GLICK, SD ;
MAISONNEUVE, IM ;
RAUCCI, J ;
ARCHER, S .
BRAIN RESEARCH, 1995, 681 (1-2) :147-152