Mapping the proteome of barrel medic (Medicago truncatula)

被引:173
作者
Watson, BS [1 ]
Asirvatham, VS [1 ]
Wang, LJ [1 ]
Sumner, LW [1 ]
机构
[1] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73402 USA
关键词
D O I
10.1104/pp.102.019034
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
A survey of six organ-/tissue-specific proteomes of the model legume barrel medic (Medicago truncatula) was performed. Two-dimensional polyacrylamide gel electrophoresis reference maps of protein extracts from leaves, stems, roots, flowers, seed pods, and cell suspension cultures were obtained. Five hundred fifty-one proteins were excised and 304 proteins identified using peptide mass fingerprinting and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Nanoscale high-performance liquid chromatography coupled with tandem quadrupole time-of-flight mass spectrometry was used to validate marginal matrix-assisted laser desorption ionization time-of-flight mass spectrometry protein identifications. This dataset represents one of the most comprehensive plant proteome projects to date and provides a basis for future proteome comparison of genetic mutants, biotically and abiotically challenged plants, and/or environmentally challenged plants. Technical details concerning peptide mass fingerprinting, database queries, and protein identification success rates in the absence of a sequenced genome are reported and discussed. A summary of the identified proteins and their putative functions are presented. The tissue-specific expression of proteins and the levels of identified proteins are compared with their related transcript abundance as quantified through EST counting. It is estimated that approximately 50% of the proteins appear to be correlated with their corresponding mRNA levels.
引用
收藏
页码:1104 / 1123
页数:20
相关论文
共 88 条
[1]  
Anderson NG, 2001, PROTEOMICS, V1, P3, DOI 10.1002/1615-9861(200101)1:1<3::AID-PROT3>3.0.CO
[2]  
2-T
[3]   The InterPro database, an integrated documentation resource for protein families, domains and functional sites [J].
Apweiler, R ;
Attwood, TK ;
Bairoch, A ;
Bateman, A ;
Birney, E ;
Biswas, M ;
Bucher, P ;
Cerutti, T ;
Corpet, F ;
Croning, MDR ;
Durbin, R ;
Falquet, L ;
Fleischmann, W ;
Gouzy, J ;
Hermjakob, H ;
Hulo, N ;
Jonassen, I ;
Kahn, D ;
Kanapin, A ;
Karavidopoulou, Y ;
Lopez, R ;
Marx, B ;
Mulder, NJ ;
Oinn, TM ;
Pagni, M ;
Servant, F ;
Sigrist, CJA ;
Zdobnov, EM .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :37-40
[4]  
Asirvatham VS, 2002, PROTEOMICS, V2, P960, DOI 10.1002/1615-9861(200208)2:8<960::AID-PROT960>3.0.CO
[5]  
2-2
[6]  
ASIRVATHAM VS, 2002, P 50 ASMS C MASS SPE, pR30
[7]   The significance of digital gene expression profiles [J].
Audic, S ;
Claverie, JM .
GENOME RESEARCH, 1997, 7 (10) :986-995
[8]  
Barker D. G., 1990, Plant Molecular Biology Reporter, V8, P40, DOI 10.1007/BF02668879
[9]   The structure of GABPα/β:: An ETS domain ankyrin repeat heterodimer bound to DNA [J].
Batchelor, AH ;
Piper, DE ;
de la Brousse, FC ;
McKnight, SL ;
Wolberger, C .
SCIENCE, 1998, 279 (5353) :1037-1041
[10]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]