A family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons

被引:274
作者
Tasaki, T
Mulder, LCF
Iwamatsu, A
Lee, MJ
Davydov, IV
Varshavsky, A
Muesing, M
Kwon, YT
机构
[1] Univ Pittsburgh, Ctr Pharmacogenet, Sch Pharm, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Dept Pharmaceut Sci, Sch Pharm, Pittsburgh, PA 15261 USA
[3] Rockefeller Univ, Aaron Diamond AIDS Res Ctr, New York, NY 10016 USA
[4] Prot Res Network Inc, Yokohama, Kanagawa 2360004, Japan
[5] CALTECH, Div Biol, Pasadena, CA 91125 USA
关键词
D O I
10.1128/MCB.25.16.7120-7136.2005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A subset of proteins targeted by the N-end rule pathway bear degradation signals called N-degrons, whose determinants include destabilizing N-terminal residues. Our previous work identified mouse UBR1 and UBR2 as E3 ubiquitin ligases that recognize N-degrons. Such E3s are called N-recognins. We report here that while double-mutant UBR1(-/-) UBR2(-/-) mice die as early embryos, the rescued UBR1(-/-) UBR2(-/-) fibroblasts still retain the N-end rule pathway, albeit of lower activity than that of wild-type fibroblasts. An affinity assay for proteins that bind to destabilizing N-terminal residues has identified, in addition to UBR1 and UBR2, a huge (570 kDa) mouse protein, termed UBR4, and also the 300-kDa UBR5, a previously characterized mammalian E3 known as EDD/hHYD. UBR1, UBR2, UBR4, and UBR5 shared a similar to 70-amino-acid zinc finger-like domain termed the UBR box. The mammalian genome encodes at least seven UBR box-containing proteins, which we propose to call UBR1 to UBR7. UBR1(-/-) UBR2(-/-) fibroblasts that have been made deficient in UBR4 as well (through RNA interference) were significantly impaired in the degradation of N-end rule substrates such as the Sindbis virus RNA polymerase nsP4 (bearing N-terminal Tyr) and the human immunodeficiency virus type 1 integrase (bearing N-terminal Phe). Our results establish the UBR box family as a unique class of E3 proteins that recognize N-degrons or structurally related determinants for ubiquitin-dependent proteolysis and perhaps other processes as well.
引用
收藏
页码:7120 / 7136
页数:17
相关论文
共 92 条
[1]   Scores of RINGs but No PHDs in Ubiquitin Signaling [J].
Aravind, L. ;
Iyer, L. M. ;
Koonin, E. V. .
CELL CYCLE, 2003, 2 (02) :123-126
[2]   THE DEGRADATION SIGNAL IN A SHORT-LIVED PROTEIN [J].
BACHMAIR, A ;
VARSHAVSKY, A .
CELL, 1989, 56 (06) :1019-1032
[3]   INVIVO HALF-LIFE OF A PROTEIN IS A FUNCTION OF ITS AMINO-TERMINAL RESIDUE [J].
BACHMAIR, A ;
FINLEY, D ;
VARSHAVSKY, A .
SCIENCE, 1986, 234 (4773) :179-186
[4]   SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box [J].
Bai, C ;
Sen, P ;
Hofmann, K ;
Ma, L ;
Goebl, M ;
Harper, JW ;
Elledge, SJ .
CELL, 1996, 86 (02) :263-274
[5]   YEAST N-TERMINAL AMIDASE - A NEW ENZYME AND COMPONENT OF THE N-END RULE PATHWAY [J].
BAKER, RT ;
VARSHAVSKY, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (20) :12065-12074
[6]   THE RECOGNITION COMPONENT OF THE N-END RULE PATHWAY [J].
BARTEL, B ;
WUNNING, I ;
VARSHAVSKY, A .
EMBO JOURNAL, 1990, 9 (10) :3179-3189
[7]   The proteasome:: Paradigm of a self-compartmentalizing protease [J].
Baumeister, W ;
Walz, J ;
Zühl, F ;
Seemuller, E .
CELL, 1998, 92 (03) :367-380
[8]  
Brown P. O., 1997, P161
[9]   Stable suppression of tumorigenicity by virus-mediated RNA interference [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
CANCER CELL, 2002, 2 (03) :243-247
[10]   The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor [J].
Byrd, C ;
Turner, GC ;
Varshavsky, A .
EMBO JOURNAL, 1998, 17 (01) :269-277