Crystal structure and mechanism of the Escherichia coli ArnA (PmrI) transformylase domain.: An enzyme for lipid A modification with 4-amino-4-deoxy-L-arabinose and polymyxin resistance

被引:38
作者
Gatzeva-Topalova, PZ [1 ]
May, AP [1 ]
Sousa, NC [1 ]
机构
[1] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
关键词
D O I
10.1021/bi047384g
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Gram-necrative bacteria have evolved mechanisms to resist the bactericidal action of cationic antimicrobial peptides of the innate immune system and antibiotics such as polymyxin. The strategy involves the addition of the positively charged sugar 4-amino-4-deoxy-L-arabinose (Ara4N) to lipid A in their outer membrane. ArnA is a key enzyme in the Ara4N-lipid A modification pathway. It is a bifunctional enzyme catalyzing (1) the oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcA) to the UDP4"-ketopentose [UDP-beta-(L-threo-pentapyranosyl-4"-ulose] and (2) the N-10-formyltetrahydrofolate-dependent formylation of UDP-Ara4N. Here we demonstrate that the transformylase activity of the Escherichia coli ArnA is contained in its 300 N-terminal residues. We designate it the ArnA transformylase domain and describe its crystal structure solved to 1.7 angstrom resolution. The enzyme adopts a bilobal structure with an N-terminal Rossmann fold domain containing the N-10-formyltetrahydrofolate binding site and a C-terminal subdomain resembling an OB fold. Sequence and structure conservation around the active site of ArnA transformylase and other N-10-formyltetrahydrofolate-utilizing enzymes suggests that the HxSLLPxxxG motif can be used to identify enzymes that belong to this family. Binding of an N-10-formyltetrahydrofol ate analogue was modeled into the structure of ArnA based on its similarity with glycinamide ribonucleotide formyltransferase. We also propose a mechanism for the transformylation reaction catalyzed by ArnA involving residues N-102, H-104, and D-140. Supporting this hypothesis, point mutation of any of these residues abolishes activity.
引用
收藏
页码:5328 / 5338
页数:11
相关论文
共 60 条
[1]   STRUCTURES OF APO AND COMPLEXED ESCHERICHIA-COLI GLYCINAMIDE RIBONUCLEOTIDE TRANSFORMYLASE [J].
ALMASSY, RJ ;
JANSON, CA ;
KAN, CC ;
HOSTOMSKA, Z .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (13) :6114-6118
[2]   The Salmonella typhi melittin resistance gene pqaB affects intracellular growth in PMA-differentiated U937 cells, polymyxin B resistance and lipopolysaccharide [J].
Baker, SJ ;
Gunn, JS ;
Morona, R .
MICROBIOLOGY-SGM, 1999, 145 :367-378
[3]  
BLANQUET S, 1984, METHOD ENZYMOL, V106, P141
[4]   Origin of lipid A species modified with 4-amino-4-deoxy-L-arabinose in polymyxin-resistant mutants of Escherichia coli -: An aminotransferase (ArnB) that generates UDP-4-amino-4-deoxy-L-arabinose [J].
Breazeale, SD ;
Ribeiro, AA ;
Raetz, CRH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (27) :24731-24739
[5]   Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli -: Origin of lipid a species modified with 4-amino-4-deoxy-L-arabinose [J].
Breazeale, SD ;
Ribeiro, AA ;
Raetz, CRH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (04) :2886-2896
[6]  
BREAZEALE SD, 2005, IN PRESS J BIOL CHEM
[7]   New applications of simulated annealing in X-ray crystallography and solution NMR [J].
Brunger, AT ;
Adams, PD ;
Rice, LM .
STRUCTURE, 1997, 5 (03) :325-336
[8]   SLOW-COOLING PROTOCOLS FOR CRYSTALLOGRAPHIC REFINEMENT BY SIMULATED ANNEALING [J].
BRUNGER, AT ;
KRUKOWSKI, A ;
ERICKSON, JW .
ACTA CRYSTALLOGRAPHICA SECTION A, 1990, 46 :585-593
[9]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254