Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets

被引:670
作者
Burillo, P [1 ]
Bustince, H [1 ]
机构
[1] UNIV PUBL NAVARA,DEPT MATEMAT & INFORMAT,E-31006 PAMPLONA,SPAIN
关键词
fuzzy set; intuitionistic entropy; distance; intuitionistic fuzzy set; Phi-fuzzy set;
D O I
10.1016/0165-0114(96)84611-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We recall the definitions of intuitionistic fuzzy sets and interval-valued fuzzy sets with the relation between these sets established by K. Atanassov. We define the distance measure between intuitionistic fuzzy sets and we give an axiom definition of intuitionistic fuzzy entropy and a theorem which characterizes it. Finally, we study a very special entropy and recall that all we have done for intuitionistic fuzzy sets is also good for interval-valued fuzzy sets.
引用
收藏
页码:305 / 316
页数:12
相关论文
共 11 条
  • [1] [Anonymous], 1975, INTRO THEORY FUZZY S
  • [2] INTERVAL VALUED INTUITIONISTIC FUZZY-SETS
    ATANASSOV, K
    GARGOV, G
    [J]. FUZZY SETS AND SYSTEMS, 1989, 31 (03) : 343 - 349
  • [3] Atanassov K, 1988, COMPTES RENDUS ACAEM, V41, P35
  • [4] INTUITIONISTIC FUZZY-SETS
    ATANASSOV, KT
    [J]. FUZZY SETS AND SYSTEMS, 1986, 20 (01) : 87 - 96
  • [5] Burillo P., 1992, 2 CONGRESSO NACL LOG, P135
  • [6] Deluca Termini S. A, 1972, J GEN SYSTEMS, V5, P301
  • [7] LOO SG, 1977, CYBERNETICA, V20, P201
  • [8] Sambuc R., 1975, Fonctions and floues: Application a l'aide au diagnostic en pathologie thyroidienne
  • [9] ENTROPIES IN FINITE FUZZY SETS
    TRILLAS, E
    RIERA, T
    [J]. INFORMATION SCIENCES, 1978, 15 (02) : 159 - 168
  • [10] YAGER RR, 1982, INT J GEN SYST, V8, P169