Enhanced evolutionary programming for function optimization
被引:5
作者:
Wu, BL
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cent Queensland, Fac Informat & Commun, Rockhampton, Qld 4702, AustraliaUniv Cent Queensland, Fac Informat & Commun, Rockhampton, Qld 4702, Australia
Wu, BL
[1
]
Yu, XH
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cent Queensland, Fac Informat & Commun, Rockhampton, Qld 4702, AustraliaUniv Cent Queensland, Fac Informat & Commun, Rockhampton, Qld 4702, Australia
Yu, XH
[1
]
机构:
[1] Univ Cent Queensland, Fac Informat & Commun, Rockhampton, Qld 4702, Australia
来源:
1998 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION - PROCEEDINGS
|
1998年
关键词:
D O I:
10.1109/ICEC.1998.700127
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
An enhanced evolutionary programming algorithm is proposed for function optimization in this paper. This algorithm incorporates the gradient descent mechanism in generation of offspring. Such incorporation improves the low convergence speed that has been a drawback of the evolutionary programming in function optimization. Five well-known test functions are used to show the effectiveness of the enhancement.